Exploring Unconventional SAM Analogues To Build Cell-Potent Bisubstrate Inhibitors for Nicotinamide N-Methyltransferase

Date
2022
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

Nicotinamide N-methyltransferase (NNMT) methylates nicotinamide and has been associated with various diseases. Herein, we report the first cell-potent NNMT bisubstrate inhibitor II399, demonstrating a Ki of 5.9 nM in a biochemical assay and a cellular IC50 value of 1.9 μM. The inhibition mechanism and cocrystal structure confirmed II399 engages both the substrate and cofactor binding pockets. Computational modeling and binding data reveal a balancing act between enthalpic and entropic components that lead to II399′s low nM binding affinity. Notably, II399 is 1 000-fold more selective for NNMT than closely related methyltransferases. We expect that II399 would serve as a valuable probe to elucidate NNMT biology. Furthermore, this strategy provides the first case of introducing unconventional SAM mimics, which can be adopted to develop cell-potent inhibitors for other SAM-dependent methyltransferases.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Iyamu ID, Vilseck JZ, Yadav R, Noinaj N, Huang R. Exploring Unconventional SAM Analogues To Build Cell-Potent Bisubstrate Inhibitors for Nicotinamide N-Methyltransferase. Angewandte Chemie International Edition. 2022;61(16):e202114813. doi:10.1002/anie.202114813
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Angewandte Chemie
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}