A Comprehensive Study of Black Phosphorus-Graphite Composite Anodes and HEMM Synthesis Conditions for Improved Cycle Stability
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Black phosphorus (BP) is a high capacity anode material and has been synthesized with different carbon materials to mitigate volume changes during lithiation/delithiation. There is a large discrepancy in cycle stability of phosphorus-carbon materials in the literature, and factors affecting cycle performance are not well elucidated. In this study, the electrochemical performance of a black phosphorus-graphite (BP-G) composite anode material with regards to (1) material composition, (2) electrolyte additive, (3) ballmilling synthesis conditions, and (4) electrode loading is thoroughly investigated. In particular, this study reveals how ballmilling synthesis conditions correlate to electrochemical performance. Results show that the main contributors to cycle stability of BP-G composites are material composition and electrode loading, while first cycle efficiency and reversible capacity are strongly dependent on ballmilling synthetic conditions. Composition control is the most effective way to mitigate the volume change-induced mechanical degradation of BP-G composites, while ballmilling processing optimization is the main contributor to BP activation in BP-G composites, improving reversible capacity and first cycle efficiency. We thereby propose an optimized, HEMM-based synthetic route for improved BP-G materials. This study provides a comprehensive understanding of BP-G electrochemical performance and the correlation to HEMM synthesis conditions.