Predicting Interrelated Alzheimer's Disease Outcomes via New Self-Learned Structured Low-Rank Model
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. As the prodromal stage of AD, Mild Cognitive Impairment (MCI) maintains a good chance of converting to AD. How to efficaciously detect this conversion from MCI to AD is significant in AD diagnosis. Different from standard classification problems where the distributions of classes are independent, the AD outcomes are usually interrelated (their distributions have certain overlaps). Most of existing methods failed to examine the interrelations among different classes, such as AD, MCI conversion and MCI non-conversion. In this paper, we proposed a novel self-learned low-rank structured learning model to automatically uncover the interrelations among different classes and utilized such interrelated structures to enhance classification. We conducted experiments on the ADNI cohort data. Empirical results demonstrated advantages of our model.