Neonatal Deletion of Hand1 and Hand2 within Murine Cardiac Conduction System Reveals a Novel Role for HAND2 in Rhythm Homeostasis

dc.contributor.authorGeorge, Rajani M.
dc.contributor.authorGuo, Shuai
dc.contributor.authorFirulli, Beth A.
dc.contributor.authorRubart, Michael
dc.contributor.authorFirulli, Anthony B.
dc.contributor.departmentPediatrics, School of Medicineen_US
dc.date.accessioned2023-07-17T16:23:06Z
dc.date.available2023-07-17T16:23:06Z
dc.date.issued2022-07-04
dc.description.abstractThe cardiac conduction system, a network of specialized cells, is required for the functioning of the heart. The basic helix loop helix factors Hand1 and Hand2 are required for cardiac morphogenesis and have been implicated in cardiac conduction system development and maintenance. Here we use embryonic and post-natal specific Cre lines to interrogate the role of Hand1 and Hand2 in the function of the murine cardiac conduction system. Results demonstrate that loss of HAND1 in the post-natal conduction system does not result in any change in electrocardiogram parameters or within the ventricular conduction system as determined by optical voltage mapping. Deletion of Hand2 within the post-natal conduction system results in sex-dependent reduction in PR interval duration in these mice, suggesting a novel role for HAND2 in regulating the atrioventricular conduction. Surprisingly, results show that loss of both HAND factors within the post-natal conduction system does not cause any consistent changes in cardiac conduction system function. Deletion of Hand2 in the embryonic left ventricle results in inconsistent prolongation of PR interval and susceptibility to atrial arrhythmias. Thus, these results suggest a novel role for HAND2 in homeostasis of the murine cardiac conduction system and that HAND1 loss potentially rescues the shortened HAND2 PR phenotype.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationGeorge RM, Guo S, Firulli BA, Rubart M, Firulli AB. Neonatal Deletion of Hand1 and Hand2 within Murine Cardiac Conduction System Reveals a Novel Role for HAND2 in Rhythm Homeostasis. J Cardiovasc Dev Dis. 2022;9(7):214. Published 2022 Jul 4. doi:10.3390/jcdd9070214en_US
dc.identifier.urihttps://hdl.handle.net/1805/34425
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.relation.isversionof10.3390/jcdd9070214en_US
dc.relation.journalJournal of Cardiovascular Development and Diseaseen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourcePMCen_US
dc.subjectCardiac conductionen_US
dc.subjectHAND factorsen_US
dc.subjectElectrocardiogramen_US
dc.subjectOptical mappingen_US
dc.titleNeonatal Deletion of Hand1 and Hand2 within Murine Cardiac Conduction System Reveals a Novel Role for HAND2 in Rhythm Homeostasisen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
jcdd-09-00214.pdf
Size:
1.68 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: