Automatic segmentation of intravital fluorescence microscopy images by K-means clustering of FLIM phasors

dc.contributor.authorZhang, Yide
dc.contributor.authorHato, Takashi
dc.contributor.authorDagher, Pierre C.
dc.contributor.authorNichols, Evan L.
dc.contributor.authorSmith, Cody J.
dc.contributor.authorDunn, Kenneth W.
dc.contributor.authorHoward, Scott S.
dc.contributor.departmentMedicine, School of Medicineen_US
dc.date.accessioned2020-09-25T19:03:45Z
dc.date.available2020-09-25T19:03:45Z
dc.date.issued2019-08
dc.description.abstractFluorescence lifetime imaging microscopy (FLIM) provides additional contrast for fluorophores with overlapping emission spectra. The phasor approach to FLIM greatly reduces the complexity of FLIM analysis and enables a useful image segmentation technique by selecting adjacent phasor points and labeling their corresponding pixels with different colors. This phasor labeling process, however, is empirical and could lead to biased results. In this Letter, we present a novel and unbiased approach to automate the phasor labeling process using an unsupervised machine learning technique, i.e., K-means clustering. In addition, we provide an open-source, user-friendly program that enables users to easily employ the proposed approach. We demonstrate successful image segmentation on 2D and 3D FLIM images of fixed cells and living animals acquired with two different FLIM systems. Finally, we evaluate how different parameters affect the segmentation result and provide a guideline for users to achieve optimal performance.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationZhang, Y., Zhang, Y., Hato, T., Dagher, P. C., Nichols, E. L., Smith, C. J., Dunn, K. W., & Howard, S. S. (2019). Automatic segmentation of intravital fluorescence microscopy images by K-means clustering of FLIM phasors. Optics Letters, 44(16), 3928–3931. https://doi.org/10.1364/OL.44.003928en_US
dc.identifier.urihttps://hdl.handle.net/1805/23948
dc.language.isoenen_US
dc.publisherOSAen_US
dc.relation.isversionof10.1364/OL.44.003928en_US
dc.relation.journalOptics Lettersen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectfluorescence lifetime imaging microscopyen_US
dc.subjectsegmentationen_US
dc.subjectintravital fluorescenceen_US
dc.titleAutomatic segmentation of intravital fluorescence microscopy images by K-means clustering of FLIM phasorsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zhang2019Automatic.pdf
Size:
1.75 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: