Jacobi matrices on trees generated by Angelesco systems: Asymptotics of coefficients and essential spectrum

dc.contributor.authorAptekarev, Alexander I.
dc.contributor.authorDenisov, Sergey A.
dc.contributor.authorYattselev, Maxim L.
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2023-06-13T15:14:46Z
dc.date.available2023-06-13T15:14:46Z
dc.date.issued2021
dc.description.abstractWe continue studying the connection between Jacobi matrices defined on a tree and multiple orthogonal polynomials (MOPs) that was recently discovered. In this paper, we consider Angelesco systems formed by two analytic weights and obtain asymptotics of the recurrence coefficients and strong asymptotics of MOPs along all directions (including the marginal ones). These results are then applied to show that the essential spectrum of the related Jacobi matrix is the union of intervals of orthogonality.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationAptekarev, A. I., Denisov, S. A., & Yattselev, M. L. (2021). Jacobi matrices on trees generated by Angelesco systems: Asymptotics of coefficients and essential spectrum. Journal of Spectral Theory, 11(4), 1511–1597. https://doi.org/10.4171/jst/380en_US
dc.identifier.urihttps://hdl.handle.net/1805/33712
dc.language.isoenen_US
dc.publisherEMSen_US
dc.relation.isversionof10.4171/jst/380en_US
dc.relation.journalJournal of Spectral Theoryen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourcePublisheren_US
dc.subjectJacobi matrices on treesen_US
dc.subjectessential spectrumen_US
dc.subjectmultiple orthogonal polynomialsen_US
dc.titleJacobi matrices on trees generated by Angelesco systems: Asymptotics of coefficients and essential spectrumen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Aptekarev2021Jacobi-CCBY.pdf
Size:
898.89 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: