An asymptotic expansion for the expected number of real zeros of Kac-Geronimus polynomials

dc.contributor.authorAljubran, Hanan
dc.contributor.authorYattselev, Maxim L.
dc.contributor.departmentMathematical Sciences, School of Science
dc.date.accessioned2024-04-02T17:01:27Z
dc.date.available2024-04-02T17:01:27Z
dc.date.issued2021
dc.description.abstractLet {φi(z;α)}i=0∞, corresponding to α∈(−1,1), be orthonormal Geronimus polynomials. We study asymptotic behavior of the expected number of real zeros, say 𝔼n(α), of random polynomials Pn(z):= ∑i=0nηiφi(z;α), where η0,…,ηn are i.i.d. standard Gaussian random variables. When α=0, φi(z;0)=zi and Pn(z) are called Kac polynomials. In this case it was shown by Wilkins that 𝔼n(0) admits an asymptotic expansion of the form 𝔼n(0)∼2πlog(n+1)+ ∑p=0∞Ap(n+1)−p (Kac himself obtained the leading term of this expansion). In this work we obtain a similar expansion of 𝔼(α) for α≠0. As it turns out, the leading term of the asymptotics in this case is (1∕π)log(n+1).
dc.eprint.versionAuthor's manuscript
dc.identifier.citationAljubran H, Yattselev ML. An asymptotic expansion for the expected number of real zeros of Kac–Geronimus polynomials. Rocky Mountain Journal of Mathematics. 2021;51(4):1171-1188. doi:10.1216/rmj-2021-51-1171
dc.identifier.urihttps://hdl.handle.net/1805/39701
dc.language.isoen_US
dc.publisherRocky Mountain Mathematics Consortium
dc.relation.isversionof10.1216/rmj-2021-51-1171
dc.relation.journalRocky Mountain Journal of Mathematics
dc.rightsPublisher Policy
dc.sourceArXiv
dc.subjectAsymptotic expansion
dc.subjectExpected number of real zeros
dc.subjectGeronimus polynomials
dc.subjectRandom polynomials
dc.titleAn asymptotic expansion for the expected number of real zeros of Kac-Geronimus polynomials
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Aljubran2021Asymptotic-AAM.pdf
Size:
245.87 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: