CRMP2 Participates in Regulating Mitochondrial Morphology and Motility in Alzheimer’s Disease

Date
2023-04-29
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
MDPI
Abstract

Mitochondrial bioenergetics and dynamics (alterations in morphology and motility of mitochondria) play critical roles in neuronal reactions to varying energy requirements in health and disease. In Alzheimer’s disease (AD), mitochondria undergo excessive fission and become less motile. The mechanisms leading to these alterations are not completely clear. Here, we show that collapsin response mediator protein 2 (CRMP2) is hyperphosphorylated in AD and that is accompanied by a decreased interaction of CRMP2 with Drp1, Miro 2, and Mitofusin 2, which are proteins involved in regulating mitochondrial morphology and motility. CRMP2 was hyperphosphorylated in postmortem brain tissues of AD patients, in brain lysates, and in cultured cortical neurons from the double transgenic APP/PS1 mice, an AD mouse model. CRMP2 hyperphosphorylation and dissociation from its binding partners correlated with increased Drp1 recruitment to mitochondria, augmented mitochondrial fragmentation, and reduced mitochondrial motility. (S)-lacosamide ((S)-LCM), a small molecule that binds to CRMP2, decreased its phosphorylation at Ser 522 and Thr 509/514, and restored CRMP2′s interaction with Miro 2, Drp1, and Mitofusin 2. This was paralleled by decreased Drp1 recruitment to mitochondria, diminished mitochondrial fragmentation, and improved motility of the organelles. Additionally, (S)-LCM-protected cultured cortical AD neurons from cell death. Thus, our data suggest that CRMP2, in a phosphorylation-dependent manner, participates in the regulation of mitochondrial morphology and motility, and modulates neuronal survival in AD.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Brustovetsky T, Khanna R, Brustovetsky N. CRMP2 Participates in Regulating Mitochondrial Morphology and Motility in Alzheimer's Disease. Cells. 2023;12(9):1287. Published 2023 Apr 29. doi:10.3390/cells12091287
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Cells
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}