Shub’s conjecture for smooth longitudinal maps of Sm
dc.contributor.author | Graff, Grzegorz | |
dc.contributor.author | Misiurewicz, Michał | |
dc.contributor.author | Nowak-Przygodzki, Piotr | |
dc.contributor.department | Mathematical Sciences, School of Science | en_US |
dc.date.accessioned | 2018-10-26T13:16:15Z | |
dc.date.available | 2018-10-26T13:16:15Z | |
dc.date.issued | 2018 | |
dc.description.abstract | Let f be a smooth map of the m-dimensional sphere Sm to itself, preserving the longitudinal foliation. We estimate from below the number of fixed points of the iterates of f, reduce Shub’s conjecture for longitudinal maps to a lower dimensional classical version, and prove the conjecture in case m=2 and in a weak form for m=3. | en_US |
dc.eprint.version | Author's manuscript | en_US |
dc.identifier.citation | Graff, G., Misiurewicz, M., & Nowak-Przygodzki, P. (2018). Shub’s conjecture for smooth longitudinal maps of Sm. Journal of Difference Equations and Applications, 24(7), 1044–1054. https://doi.org/10.1080/10236198.2018.1449840 | en_US |
dc.identifier.uri | https://hdl.handle.net/1805/17657 | |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis | en_US |
dc.relation.isversionof | 10.1080/10236198.2018.1449840 | en_US |
dc.relation.journal | Journal of Difference Equations and Applications | en_US |
dc.rights | Publisher Policy | en_US |
dc.source | Author | en_US |
dc.subject | periodic points | en_US |
dc.subject | topological degree | en_US |
dc.subject | smooth maps | en_US |
dc.title | Shub’s conjecture for smooth longitudinal maps of Sm | en_US |
dc.type | Article | en_US |