Behavioral indicators of succeeding and failing under higher-challenge compulsion-like alcohol drinking in rat
Date
Language
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Intake despite negative consequences (compulsivity) contributes strongly to the harm of alcohol use disorder, making the underlying psychological and circuit mechanisms of great importance. To gain insight into possible underlying action strategies, we compared rat licking microstructure across compulsion-like and non-compulsive conditions. We previously showed that drinking under a moderate-challenge, quinine-alcohol model (Alc-ModQ) shows less variable responding in many measures, suggesting a more automatic strategy to overcome challenge. Here, we reanalyzed our original data, newly focusing on the behavioral profile of higher-challenge intake (100 mg/L quinine in alcohol, Alc-HighQ). Alc-HighQ greatly dropped consumption, yet retained aspects of greater automaticity and drive seen with Alc-ModQ, including earlier bout initiation and measures suggesting more stereotyped tongue control. In contrast, Alc-HighQ disordered bout generation and timing. Importantly, only fast-starting bouts persisted under Alc-HighQ, and while there were many fewer longer Alc-HighQ bouts, they still contributed >50 % of consumption. Also, longer bouts under Alc-HighQ had an early, several-second period with greater chance of stopping, but afterwards showed similar persistence and recovery from slow licking as other drinking conditions. Together, our findings elucidate novel behavioral indicators of successful and unsuccessful epochs of Alc-HighQ, compulsion-like intake. We also relate findings to congruent human and animal work implicating anterior insula and medial prefrontal cortices as critical for compulsion-like alcohol responding, and where ventral frontal cortex has been more associated with overall action plan and tongue control (retained under Alc-HighQ), with medial cortex more related to proximal action timing (disrupted under Alc-HighQ except after faster bout initiation).