Lambert function methods for laser dynamics with time-delayed feedback

dc.contributor.authorJoglekar, Yogesh N.
dc.contributor.authorVemuri, Gautam
dc.contributor.authorWilkey, Andrew
dc.contributor.departmentPhysics, School of Scienceen_US
dc.date.accessioned2018-07-20T15:57:12Z
dc.date.available2018-07-20T15:57:12Z
dc.date.issued2017-12-30
dc.description.abstractTime-delayed differential equations arise frequently in the study of nonlinear dynamics of lasers with optical feedback and because the analytical solution of such equations can be intractable, one resorts to numerical methods. In this manuscript, we show that under some conditions, the rate equations model that is used to model semiconductor lasers with feedback can be analytically solved by using the Lambert W function. In particular, we discuss the conditions under which the coupled rate equations for the intracavity electric field and carrier inversion can be reduced to a single equation for the field, and how this single rate equation can be cast in a form that is amenable to the use of the Lambert W function.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationJoglekar, Y. N., Vemuri, G., & Wilkey, A. (2017). Lambert function methods for laser dynamics with time-delayed feedback. Acta Polytechnica, 57(6), 399–403. https://doi.org/10.14311/AP.2017.57.0399en_US
dc.identifier.issn1805-2363en_US
dc.identifier.urihttps://hdl.handle.net/1805/16738
dc.language.isoen_USen_US
dc.relation.isversionof10.14311/AP.2017.57.0399en_US
dc.relation.journalActa Polytechnicaen_US
dc.rightsAttribution 3.0 United States
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/
dc.sourcePublisheren_US
dc.subjecttime-delayed differential equationsen_US
dc.subjectLambert functionen_US
dc.subjectlasersen_US
dc.titleLambert function methods for laser dynamics with time-delayed feedbacken_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4608-11280-1-PB.pdf
Size:
646.84 KB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: