LAL deficiency induced myeloid-derived suppressor cells as targets and biomarkers for lung cancer

Date
2023
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
BMJ
Abstract

Background: Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells in tumor microenvironment, which suppress antitumor immunity. Expansion of various MDSC subpopulations is closely associated with poor clinical outcomes in cancer. Lysosomal acid lipase (LAL) is a key enzyme in the metabolic pathway of neutral lipids, whose deficiency (LAL-D) in mice induces the differentiation of myeloid lineage cells into MDSCs. These Lal -/- MDSCs not only suppress immune surveillance but also stimulate cancer cell proliferation and invasion. Understanding and elucidating the underlying mechanisms of MDSCs biogenesis will help to facilitate diagnosis/prognosis of cancer occurrence and prevent cancer growth and spreading.

Methods: Single-cell RNA sequencing (scRNA-seq) was performed to distinguish intrinsic molecular and cellular differences between normal versus Lal -/- bone marrow-derived Ly6G+ myeloid populations in mice. In humans, LAL expression and metabolic pathways in various myeloid subsets of blood samples of patients with non-small cell lung cancer (NSCLC) were assessed by flow cytometry. The profiles of myeloid subsets were compared in patients with NSCLC before and after the treatment of programmed death-1 (PD-1) immunotherapy.

Results: scRNA-seq of Lal -/- CD11b+Ly6G+ MDSCs identified two distinctive clusters with differential gene expression patterns and revealed a major metabolic shift towards glucose utilization and reactive oxygen species (ROS) overproduction. Blocking pyruvate dehydrogenase (PDH) in glycolysis reversed Lal -/- MDSCs' capabilities of immunosuppression and tumor growth stimulation and reduced ROS overproduction. In the blood samples of human patients with NSCLC, LAL expression was significantly decreased in CD13+/CD14+/CD15+/CD33+ myeloid cell subsets. Further analysis in the blood of patients with NSCLC revealed an expansion of CD13+/CD14+/CD15+ myeloid cell subsets, accompanied by upregulation of glucose-related and glutamine-related metabolic enzymes. Pharmacological inhibition of the LAL activity in the blood cells of healthy participants increased the numbers of CD13+ and CD14+ myeloid cell subsets. PD-1 checkpoint inhibitor treatment in patients with NSCLC reversed the increased number of CD13+ and CD14+ myeloid cell subsets and PDH levels in CD13+ myeloid cells.

Conclusion: These results demonstrate that LAL and the associated expansion of MDSCs could serve as targets and biomarkers for anticancer immunotherapy in humans.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Zhao T, Liu S, Hanna NH, et al. LAL deficiency induced myeloid-derived suppressor cells as targets and biomarkers for lung cancer. J Immunother Cancer. 2023;11(3):e006272. doi:10.1136/jitc-2022-006272
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal for ImmunoTherapy of Cancer
Rights
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}