Oral Sensory Neurons of the Geniculate Ganglion That Express Tyrosine Hydroxylase Comprise a Subpopulation That Contacts Type II and Type III Taste Bud Cells
Date
Authors
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Oral sensory neurons of the geniculate ganglion (GG) innervate taste papillae and buds on the tongue and soft palate. Electrophysiological recordings of these neurons and fibers revealed complexity in the number of unique response profiles observed, suggesting there are several distinct neuronal subtypes. Molecular descriptions of these subpopulations are incomplete. We report here the identification of a subpopulation of GG oral sensory neurons in mice by expression of tyrosine hydroxylase (TH). TH-expressing geniculate neurons represent 10–20% of oral sensory neurons and these neurons innervate taste buds in fungiform and anterior foliate taste papillae on the surface of the tongue, as well as taste buds in the soft palate. While 35–50% of taste buds on the tongue are innervated by these TH+ neurons, 100% of soft palate taste buds are innervated. These neurons did not have extragemmal processes outside of taste buds and did not express the mechanosensory neuron-associated gene Ret, suggesting they are chemosensory and not somatosensory neurons. Within taste buds, TH-expressing fibers contacted both Type II and Type III cells, raising the possibility that they are responsive to more than one taste quality. During this analysis we also identified a rare TH+ taste receptor cell type that was found in only 12–25% of taste buds and co-expressed TRPM5, suggesting it was a Type II cell. Taken together, TH-expressing GG oral sensory neurons innervate taste buds preferentially in the soft palate and contact Type II and Type III taste bud receptor cells.