Degradable and Multifunctional PEG-Based Hydrogels Formed by iEDDA Click Chemistry with Stable Click-Induced Supramolecular Interactions

Date
2024-02-16
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Chemical Society
Abstract

The inverse electron demand Diels-Alder (iEDDA) reactions are highly efficient click chemistry increasingly utilized in bioconjugation, live cell labeling, and the synthesis and modification of biomaterials. iEDDA click reactions have also been used to cross-link tetrazine (Tz) and norbornene (NB) modified macromers [e.g., multiarm poly(ethylene glycol) or PEG]. In these hydrogels, Tz-NB adducts exhibit stable supramolecular interactions with a high hydrolytic stability. Toward engineering a new class of PEG-based click hydrogels with highly adaptable properties, we previously reported a new group of NB-derivatized PEG macromers via reacting hydroxyl-terminated PEG with carbic anhydride (CA). In this work, we show that c cross-linked by PEGNBCA or its derivatives exhibited fast and tunable hydrolytic degradation. Here, we show that PEGNBCA (either mono- or octafunctional) and its dopamine or tyramine conjugated derivatives (i.e., PEGNB-D and PEGNB-T) readily cross-link with 4-arm PEG-Tz to form a novel class of multifunctional iEDDA click hydrogels. Through modularly adjusting the macromers with unstable and stable iEDDA click-induced supramolecular interactions (iEDDA-CSI), we achieved highly tunable degradation, with full degradation in less than 2 weeks to over two months. We also show that secondary enzymatic reactions could dynamically stiffen these hydrogels. These hydrogels could also be spatiotemporally photopatterned through visible light-initiated photochemistry. Finally, the iEDDA-CSI hydrogels post ester hydrolysis displayed shear-thinning and self-healing properties, enabling injectable delivery.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Dimmitt NH, Lin CC. Degradable and Multifunctional PEG-Based Hydrogels Formed by iEDDA Click Chemistry with Stable Click-Induced Supramolecular Interactions. Macromolecules. 2024;57(4):1556-1568. Published 2024 Feb 16. doi:10.1021/acs.macromol.3c01855
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Macromolecules
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}