An ultrasound based platform for image-guided radiotherapy in canine bladder cancer patients

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2019-11-15
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Background and purpose: Ultrasound (US) is a non-invasive, non-radiographic imaging technique with high spatial and temporal resolution that can be used for localizing soft-tissue structures and tumors in real-time during radiotherapy (RT) (inter- and intra-fraction). A comprehensive approach incorporating an in-house 3D-US system within RT is presented. This system is easier to adopt into existing treatment protocols than current US based systems, with the aim of providing millimeter intra-fraction alignment errors and sensitivity to track intra-fraction bladder movement.

Materials and methods: An in-house integrated US manipulator and platform was designed to relate the computed tomographic (CT) scanner, 3D-US and linear accelerator coordinate systems. An agar-based phantom with measured speed of sound and densities consistent with tissues surrounding the bladder was rotated (0-45°) and translated (up to 55 mm) relative to the US and CT coordinate systems to validate this device. After acquiring and integrating CT and US images into the treatment planning system, US-to-US and US-to-CT images were co-registered to re-align the phantom relative to the linear accelerator.

Results: Statistical errors from US-to-US registrations for various patient orientations ranged from 0.1 to 1.7 mm for x, y, and z translation components, and 0.0-1.1° for rotational components. Statistical errors from US-to-CT registrations were 0.3-1.2 mm for the x, y and z translational components and 0.1-2.5° for the rotational components.

Conclusions: An ultrasound-based platform was designed, constructed and tested on a CT/US tissue-equivalent phantom to track bladder displacement with a statistical uncertainty to correct and track inter- and intra-fractional displacements of the bladder during radiation treatments.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Sick JT, Rancilio NJ, Fulkerson CV, Plantenga JM, Knapp DW, Stantz KM. An ultrasound based platform for image-guided radiotherapy in canine bladder cancer patients. Phys Imaging Radiat Oncol. 2019;12:10-16. Published 2019 Nov 15. doi:10.1016/j.phro.2019.10.003
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Physics and Imaging in Radiation Oncology
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}