Rotation sets and almost periodic sequences

dc.contributor.authorJäger, T.
dc.contributor.authorPasseggi, A.
dc.contributor.authorŠtimac, Sonja
dc.contributor.departmentDepartment of Mathematical Sciences, School of Scienceen_US
dc.date.accessioned2016-11-15T19:15:22Z
dc.date.available2016-11-15T19:15:22Z
dc.date.issued2016-10
dc.description.abstractWe study the rotational behaviour on minimal sets of torus homeomorphisms and show that the associated rotation sets can be any type of line segment as well as non-convex and even plane-separating continua. This shows that the restriction which hold for rotation sets on the whole torus are not valid on minimal sets. The proof uses a construction of rotational horseshoes by Kwapisz to transfer the problem to a symbolic level, where the desired rotational behaviour is implemented by means of suitable irregular Toeplitz sequences.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationJäger, T., Passeggi, A., & Štimac, S. (2016). Rotation sets and almost periodic sequences. Mathematische Zeitschrift, 284(1–2), 271–284. https://doi.org/10.1007/s00209-016-1656-3en_US
dc.identifier.urihttps://hdl.handle.net/1805/11458
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s00209-016-1656-3en_US
dc.relation.journalMathematische Zeitschriften_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectrotational behavioren_US
dc.subjectToeplitz sequencesen_US
dc.titleRotation sets and almost periodic sequencesen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
jager_2016_rotation.pdf
Size:
234.13 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: