Data-driven clustering identifies features distinguishing multisystem inflammatory syndrome from acute COVID-19 in children and adolescents

dc.contributor.authorGeva, Alon
dc.contributor.authorPatel, Manish M.
dc.contributor.authorGeva, Alon
dc.contributor.authorPatel, Manish M.
dc.contributor.authorNewhams, Margaret M.
dc.contributor.authorYoung, Cameron C.
dc.contributor.authorSon, Mary Beth F.
dc.contributor.authorKong, Michele
dc.contributor.authorMaddux, Aline B.
dc.contributor.authorHall, Mark W.
dc.contributor.authorRiggs, Becky J.
dc.contributor.authorSingh, Aalok R.
dc.contributor.authorGiuliano, John S.
dc.contributor.authorHobbs, Charlotte V.
dc.contributor.authorLoftis, Laura L.
dc.contributor.authorMcLaughlin, Gwenn E.
dc.contributor.authorSchwartz, Stephanie P.
dc.contributor.authorSchuster, Jennifer E.
dc.contributor.authorBabbitt, Christopher J.
dc.contributor.authorHalasa, Natasha B.
dc.contributor.authorGertz, Shira J.
dc.contributor.authorDoymaz, Sule
dc.contributor.authorHume, Janet R.
dc.contributor.authorBradford, Tamara T.
dc.contributor.authorIrby, Katherine
dc.contributor.authorCarroll, Christopher L.
dc.contributor.authorMcGuire, John K.
dc.contributor.authorTarquinio, Keiko M.
dc.contributor.authorRowan, Courtney M.
dc.contributor.authorMack, Elizabeth H.
dc.contributor.authorCvijanovich, Natalie Z.
dc.contributor.authorFitzgerald, Julie C.
dc.contributor.authorSpinella, Philip C.
dc.contributor.authorStaat, Mary A.
dc.contributor.authorClouser, Katharine N.
dc.contributor.authorSoma, Vijaya L.
dc.contributor.authorDapul, Heda
dc.contributor.authorMaamari, Mia
dc.contributor.authorBowens, Cindy
dc.contributor.authorHavlin, Kevin M.
dc.contributor.authorMourani, Peter M.
dc.contributor.authorHeidemann, Sabrina M.
dc.contributor.authorHorwitz, Steven M.
dc.contributor.authorFeldstein, Leora R.
dc.contributor.authorTenforde, Mark W.
dc.contributor.authorNewburger, Jane W.
dc.contributor.authorMandl, Kenneth D.
dc.contributor.authorRandolph, Adrienne G.
dc.contributor.authorOvercoming COVID-19 Investigators
dc.contributor.departmentPediatrics, School of Medicineen_US
dc.date.accessioned2021-11-03T17:25:25Z
dc.date.available2021-11-03T17:25:25Z
dc.date.issued2021-08-31
dc.description.abstractBackground Multisystem inflammatory syndrome in children (MIS-C) consensus criteria were designed for maximal sensitivity and therefore capture patients with acute COVID-19 pneumonia. Methods We performed unsupervised clustering on data from 1,526 patients (684 labeled MIS-C by clinicians) <21 years old hospitalized with COVID-19-related illness admitted between 15 March 2020 and 31 December 2020. We compared prevalence of assigned MIS-C labels and clinical features among clusters, followed by recursive feature elimination to identify characteristics of potentially misclassified MIS-C-labeled patients. Findings Of 94 clinical features tested, 46 were retained for clustering. Cluster 1 patients (N = 498; 92% labeled MIS-C) were mostly previously healthy (71%), with mean age 7·2 ± 0·4 years, predominant cardiovascular (77%) and/or mucocutaneous (82%) involvement, high inflammatory biomarkers, and mostly SARS-CoV-2 PCR negative (60%). Cluster 2 patients (N = 445; 27% labeled MIS-C) frequently had pre-existing conditions (79%, with 39% respiratory), were similarly 7·4 ± 2·1 years old, and commonly had chest radiograph infiltrates (79%) and positive PCR testing (90%). Cluster 3 patients (N = 583; 19% labeled MIS-C) were younger (2·8 ± 2·0 y), PCR positive (86%), with less inflammation. Radiographic findings of pulmonary infiltrates and positive SARS-CoV-2 PCR accurately distinguished cluster 2 MIS-C labeled patients from cluster 1 patients. Interpretation Using a data driven, unsupervised approach, we identified features that cluster patients into a group with high likelihood of having MIS-C. Other features identified a cluster of patients more likely to have acute severe COVID-19 pulmonary disease, and patients in this cluster labeled by clinicians as MIS-C may be misclassified. These data driven phenotypes may help refine the diagnosis of MIS-C.en_US
dc.description.sponsorshipThis work was funded by the US Centers for Disease Control and Prevention (75D30120C07725) and National Institutes of Health (K12HD047349 and R21HD095228).en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationGeva, A., Patel, M. M., Newhams, M. M., Young, C. C., Son, M. B. F., Kong, M., Maddux, A. B., Hall, M. W., Riggs, B. J., Singh, A. R., Giuliano, J. S., Hobbs, C. V., Loftis, L. L., McLaughlin, G. E., Schwartz, S. P., Schuster, J. E., Babbitt, C. J., Halasa, N. B., Gertz, S. J., … Randolph, A. G. (2021). Data-driven clustering identifies features distinguishing multisystem inflammatory syndrome from acute COVID-19 in children and adolescents. EClinicalMedicine, 40, 101112. https://doi.org/10.1016/j.eclinm.2021.101112en_US
dc.identifier.issn25895370en_US
dc.identifier.urihttps://hdl.handle.net/1805/26943
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.eclinm.2021.101112en_US
dc.relation.journalEClinicalMedicineen_US
dc.rightsAttribution 4.0 United States
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourcePublisheren_US
dc.subjectMultisystem inflammatory syndromeen_US
dc.subjectCOVID-19en_US
dc.subjectPediatricsen_US
dc.subjectCritical care medicineen_US
dc.subjectClusteringen_US
dc.titleData-driven clustering identifies features distinguishing multisystem inflammatory syndrome from acute COVID-19 in children and adolescentsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Geva2021Data-CCBY.pdf
Size:
996.43 KB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: