Phosphonodifluoropyruvate is a mechanism-based inhibitor of phosphonopyruvate decarboxylase from Bacteroides fragilis

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2017-08
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Bacteroides fragilis, a human pathogen, helps in the formation of intra-abdominal abscesses and is involved in 90% of anaerobic peritoneal infections. Phosphonopyruvate decarboxylase (PnPDC), a thiamin diphosphate (ThDP)-dependent enzyme, plays a key role in the formation of 2-aminoethylphosphonate, a component of the cell wall of B. fragilis. As such PnPDC is a possible target for therapeutic intervention in this, and other phosphonate producing organisms. However, the enzyme is of more general interest as it appears to be an evolutionary forerunner to the decarboxylase family of ThDP-dependent enzymes. To date, PnPDC has proved difficult to crystallize and no X-ray structures are available. In the past we have shown that ThDP-dependent enzymes will often crystallize if the cofactor has been irreversibly inactivated. To explore this possibility, and the utility of inhibitors of phosphonate biosynthesis as potential antibiotics, we synthesized phosphonodifluoropyruvate (PnDFP) as a prospective mechanism-based inhibitor of PnPDC. Here we provide evidence that PnDFP indeed inactivates the enzyme, that the inactivation is irreversible, and is accompanied by release of fluoride ion, i.e., PnDFP bears all the hallmarks of a mechanism-based inhibitor. Unfortunately, the enzyme remains refractive to crystallization.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Pallitsch, K., Rogers, M. P., Andrews, F. H., Hammerschmidt, F., & McLeish, M. J. (2017). Phosphonodifluoropyruvate is a mechanism-based inhibitor of phosphonopyruvate decarboxylase from Bacteroides fragilis. Bioorganic & Medicinal Chemistry. https://doi.org/10.1016/j.bmc.2017.06.013
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Bioorganic & Medicinal Chemistry
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}