Automated Assessment of Disease Progression in Acute Myeloid Leukemia by Probabilistic Analysis of Flow Cytometry Data

dc.contributor.authorRajwa, Bartek
dc.contributor.authorWallace, Paul K.
dc.contributor.authorGriffiths, Elizabeth A.
dc.contributor.authorDundar, Murat
dc.contributor.departmentComputer and Information Science, School of Scienceen_US
dc.date.accessioned2018-10-18T21:27:27Z
dc.date.available2018-10-18T21:27:27Z
dc.date.issued2017-05
dc.description.abstractOBJECTIVE: Flow cytometry (FC) is a widely acknowledged technology in diagnosis of acute myeloid leukemia (AML) and has been indispensable in determining progression of the disease. Although FC plays a key role as a posttherapy prognosticator and evaluator of therapeutic efficacy, the manual analysis of cytometry data is a barrier to optimization of reproducibility and objectivity. This study investigates the utility of our recently introduced nonparametric Bayesian framework in accurately predicting the direction of change in disease progression in AML patients using FC data. METHODS: The highly flexible nonparametric Bayesian model based on the infinite mixture of infinite Gaussian mixtures is used for jointly modeling data from multiple FC samples to automatically identify functionally distinct cell populations and their local realizations. Phenotype vectors are obtained by characterizing each sample by the proportions of recovered cell populations, which are, in turn, used to predict the direction of change in disease progression for each patient. RESULTS: We used 200 diseased and nondiseased immunophenotypic panels for training and tested the system with 36 additional AML cases collected at multiple time points. The proposed framework identified the change in direction of disease progression with accuracies of 90% (nine out of ten) for relapsing cases and 100% (26 out of 26) for the remaining cases. CONCLUSIONS: We believe that these promising results are an important first step toward the development of automated predictive systems for disease monitoring and continuous response evaluation. SIGNIFICANCE: Automated measurement and monitoring of therapeutic response is critical not only for objective evaluation of disease status prognosis but also for timely assessment of treatment strategies.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationRajwa, B., Wallace, P. K., Griffiths, E. A., & Dundar, M. (2017). Automated Assessment of Disease Progression in Acute Myeloid Leukemia by Probabilistic Analysis of Flow Cytometry Data. IEEE Transactions on Bio-Medical Engineering, 64(5), 1089–1098. http://doi.org/10.1109/TBME.2016.2590950en_US
dc.identifier.urihttps://hdl.handle.net/1805/17600
dc.language.isoen_USen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionof10.1109/TBME.2016.2590950en_US
dc.relation.journalIEEE Transactions on Bio-Medical Engineeringen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectMinimal residual diseaseen_US
dc.subjectFlow cytometryen_US
dc.subjectAcute myeloid leukemiaen_US
dc.subjectAMLen_US
dc.subjectNonparametric Bayesianen_US
dc.subjectDirichlet processen_US
dc.titleAutomated Assessment of Disease Progression in Acute Myeloid Leukemia by Probabilistic Analysis of Flow Cytometry Dataen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms870797.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format
Description:
Main article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: