Assessment of Deep Learning Methods for Differentiating Autoimmune Disorders in Ultrasound Images
Date
Language
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
At present, deep learning becomes an important tool in medical image analysis, with good performance in diagnosing, pattern detection, and segmentation. Ultrasound imaging offers an easy and rapid method to detect and diagnose thyroid disorders. With the help of a computer-aided diagnosis (CAD) system based on deep learning, we have the possibility of real-time and non-invasive diagnosing of thyroidal US images. This paper proposed a study based on deep learning with transfer learning for differentiating the thyroidal ultrasound images using image pixels and diagnosis labels as inputs. We trained, assessed, and compared two pre-trained models (VGG-19 and Inception v3) using a dataset of ultrasound images consisting of 2 types of thyroid ultrasound images: autoimmune and normal. The training dataset consisted of 615 thyroid ultrasound images, from which 415 images were diagnosed as autoimmune, and 200 images as normal. The models were assessed using a dataset of 120 images, from which 80 images were diagnosed as autoimmune, and 40 images diagnosed as normal. The two deep learning models obtained very good results, as follows: the pre-trained VGG-19 model obtained 98.60% for the overall test accuracy with an overall specificity of 98.94% and overall sensitivity of 97.97%, while the Inception v3 model obtained 96.4% for the overall test accuracy with an overall specificity of 95.58% and overall sensitivity of 95.58.