Precipitation and discharge changes drive increases in Escherichia coli concentrations in an urban stream

Date
2023-08
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Determining the driving factors of E. coli dynamics and predicting future E. coli changes in urban aquatic systems are important for regulating water quality. In this study, data from 6985 measurements of E. coli from 1999 to 2019 in an urban waterway Pleasant Run in Indianapolis, Indiana (USA) were statistically analyzed by Mann-Kendall and multiple linear regression to assess the long-term trends in E. coli concentrations and to project E. coli concentrations under future climate change scenarios. E. coli concentrations monotonically increased over the last two decades, with the value increasing from 111 Most Probable Number (MPN)/100 mL in 1999 to 911 MPN/100 mL in 2019. E. coli concentrations have exceeded the Indiana standard of 235 MPN/100 mL since 1998. E. coli showed peak concentration in summer and higher concentration in sites with combined sewer overflows (CSOs) relative to those without. Precipitation had both direct and indirect impacts on E. coli concentrations meditated by stream discharge. Multiple linear regression results showed that annual precipitation and discharge accounted for 60 % of E. coli concentration variability. Based on the observed precipitation-discharge-E. coli concentration relationship, the projected results showed that, in the highest emission representative concentration pathways (RCP) 8.5 climate scenario, E. coli concentrations in the 2020s, 2050s, and 2080s will be 1350 ± 563 MPN/100 mL, 1386 ± 528 MPN/100 mL, and 1443 ± 479 MPN/100 mL, respectively. This study illustrates that climate change can impact E. coli concentrations by altering temperature, precipitation patterns, and stream flow in an urban stream and predicts an undesired future situation under a high CO2 emission scenario.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Li, R., Filippelli, G., & Wang, L. (2023). Precipitation and discharge changes drive increases in Escherichia coli concentrations in an urban stream. Science of The Total Environment, 886, 163892.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Science of The Total Environment
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}