Magnetic-field-synchronized wireless modulation of neural activity by magnetoelectric nanoparticles

dc.contributor.authorZhang, E.
dc.contributor.authorAbdel-Mottaleb, M.
dc.contributor.authorLiang, P.
dc.contributor.authorNavarrete, B.
dc.contributor.authorAkin Yildirim, Y.
dc.contributor.authorAlberteris Campos, M.
dc.contributor.authorSmith, I. T.
dc.contributor.authorWang, P.
dc.contributor.authorYildirim, B.
dc.contributor.authorYang, L.
dc.contributor.authorChen, S.
dc.contributor.authorSmith, I.
dc.contributor.authorLur, G.
dc.contributor.authorNguyen, T.
dc.contributor.authorJin, X.
dc.contributor.authorNoga, B. R.
dc.contributor.authorGanzer, P.
dc.contributor.authorKhizroev, S.
dc.contributor.departmentAnesthesia, School of Medicine
dc.date.accessioned2024-06-07T11:48:56Z
dc.date.available2024-06-07T11:48:56Z
dc.date.issued2022
dc.description.abstractThe in vitro study demonstrates wirelessly controlled modulation of neural activity using magnetoelectric nanoparticles (MENPs), synchronized to magnetic field application with a sub-25-msec temporal response. Herein, MENPs are sub-30-nm CoFe2O4@BaTiO3 core-shell nanostructures. MENPs were added to E18 rat hippocampal cell cultures (0.5 μg of MENPs per 100,000 neurons) tagged with fluorescent Ca2+ sensitive indicator cal520. MENPs were shown to wirelessly induce calcium transients which were synchronized with application of 1200-Oe bipolar 25-msec magnetic pulses at a rate of 20 pulses/sec. The observed calcium transients were similar, in shape and magnitude, to those generated through the control electric field stimulation with a 50-μA current, and they were inhibited by the sodium channel blocker tetrodotoxin. The observed MENP-based magnetic excitation of neural activity is in agreement with the non-linear M - H hysteresis loop of the MENPs, wherein the MENPs' coercivity value sets the threshold for the externally applied magnetic field.
dc.eprint.versionFinal published version
dc.identifier.citationZhang E, Abdel-Mottaleb M, Liang P, et al. Magnetic-field-synchronized wireless modulation of neural activity by magnetoelectric nanoparticles [published correction appears in Brain Stimul. 2023 Jul-Aug;16(4):981]. Brain Stimul. 2022;15(6):1451-1462. doi:10.1016/j.brs.2022.10.004
dc.identifier.urihttps://hdl.handle.net/1805/41287
dc.language.isoen_US
dc.publisherElsevier
dc.relation.isversionof10.1016/j.brs.2022.10.004
dc.relation.journalBrain Stimulation
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.sourcePublisher
dc.subjectCalcium
dc.subjectMagnetic fields
dc.subjectNanoparticles
dc.subjectNeurons
dc.titleMagnetic-field-synchronized wireless modulation of neural activity by magnetoelectric nanoparticles
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zhang2022Magnetic-CCBYNCND.pdf
Size:
3.17 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: