Genes Differentially Expressed by Haemophilus ducreyi during Anaerobic Growth Significantly Overlap Those Differentially Expressed during Experimental Infection of Human Volunteers

Date
2022
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Society for Microbiology
Abstract

Haemophilus ducreyi causes cutaneous ulcers in children and the genital ulcer disease chancroid in adults. In humans, H. ducreyi is found in the anaerobic environment of an abscess; previous studies comparing bacterial gene expression levels in pustules with the inocula (∼4-h aerobic mid-log-phase cultures) identified several upregulated differentially expressed genes (DEGs) that are associated with anaerobic metabolism. To determine how H. ducreyi alters its gene expression in response to anaerobiosis, we performed RNA sequencing (RNA-seq) on both aerobic and anaerobic broth cultures harvested after 4, 8, and 18 h of growth. Principal-coordinate analysis (PCoA) plots showed that anaerobic growth resulted in distinct transcriptional profiles compared to aerobic growth. During anaerobic growth, early-time-point comparisons (4 versus 8 h) identified few DEGs at a 2-fold change in expression and a false discovery rate (FDR) of <0.01. By 18 h, we observed 18 upregulated and 16 downregulated DEGs. DEGs involved in purine metabolism, the uptake and use of alternative carbon sources, toxin production, nitrate reduction, glycine metabolism, and tetrahydrofolate synthesis were upregulated; DEGs involved in electron transport, thiamine biosynthesis, DNA recombination, peptidoglycan synthesis, and riboflavin synthesis or modification were downregulated. To examine whether transcriptional changes that occur during anaerobiosis overlap those that occur during infection of human volunteers, we compared the overlap of DEGs obtained from 4 h of aerobic growth to 18 h of anaerobic growth to those found between the inocula and pustules in previous studies; the DEGs significantly overlapped. Thus, a major component of H. ducreyi gene regulation in vivo involves adaptation to anaerobiosis. IMPORTANCE: In humans, H. ducreyi resides in the anaerobic environment of an abscess and appears to upregulate genes involved in anaerobic metabolism. How anaerobiosis alone affects gene transcription in H. ducreyi is unknown. Using RNA-seq, we investigated how anaerobiosis affects gene transcription over time compared to aerobic growth. Our results suggest that a substantial component of H. ducreyi gene regulation in vivo overlaps the organism's response to anaerobiosis in vitro. Our data identify potential therapeutic targets that could be inhibited during in vivo growth.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Brothwell JA, Spinola SM. Genes Differentially Expressed by Haemophilus ducreyi during Anaerobic Growth Significantly Overlap Those Differentially Expressed during Experimental Infection of Human Volunteers. J Bacteriol. 2022;204(5):e0000522. doi:10.1128/jb.00005-22
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Bacteriology
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}