Topological Expansion in the Complex Cubic Log–Gas Model: One-Cut Case

dc.contributor.authorBleher, Pavel
dc.contributor.authorDeaño, Alfredo
dc.contributor.authorYattselev, Maxim
dc.contributor.departmentDepartment of Mathematical Sciences, School of Scienceen_US
dc.date.accessioned2017-05-04T19:52:48Z
dc.date.available2017-05-04T19:52:48Z
dc.date.issued2017-02
dc.description.abstractWe prove the topological expansion for the cubic log–gas partition function ZN(t)=∫Γ⋯∫Γ ∏1≤j<k≤N (zj−zk)2 N ∏ k=1 e−N(− z3 3 +tz)dz1⋯dzN, where t is a complex parameter and Γ is an unbounded contour on the complex plane extending from eπi∞ to eπi/3∞. The complex cubic log–gas model exhibits two phase regions on the complex t-plane, with one cut and two cuts, separated by analytic critical arcs of the two types of phase transition: split of a cut and birth of a cut. The common point of the critical arcs is a tricritical point of the Painlevé I type. In the present paper we prove the topological expansion for logZN(t) in the one-cut phase region. The proof is based on the Riemann–Hilbert approach to semiclassical asymptotic expansions for the associated orthogonal polynomials and the theory of S-curves and quadratic differentials.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationBleher, P., Deaño, A., & Yattselev, M. (2017). Topological Expansion in the Complex Cubic Log–Gas Model: One-Cut Case. Journal of Statistical Physics, 166(3–4), 784–827. https://doi.org/10.1007/s10955-016-1621-xen_US
dc.identifier.urihttps://hdl.handle.net/1805/12470
dc.language.isoenen_US
dc.relation.isversionof10.1007/s10955-016-1621-xen_US
dc.relation.journalJournal of Statistical Physicsen_US
dc.rightsPublisher Policyen_US
dc.sourceArXiven_US
dc.subjectlog-gas modelen_US
dc.subjectpartition functionen_US
dc.subjecttopological expansionen_US
dc.titleTopological Expansion in the Complex Cubic Log–Gas Model: One-Cut Caseen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bleher_2016_topological.pdf
Size:
1.04 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: