How Good Are Provider Annotations?: A Machine Learning Approach

If you need an accessible version of this item, please submit a remediation request.
Date
2017-01
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

Introduction: CMS-2728 form (Medical Evidence Report) assesses 23 comorbidities chosen to reflect poor outcomes and increased mortality risk. Previous studies questioned the validity of physician reporting on forms CMS-2728. We hypothesize that reporting of comorbidities by computer algorithms identifies more comorbidities than physician completion, and, therefore, is more reflective of underlying disease burden. Methods: We collected data from CMS-2728 forms for all 296 patients who had incident ESRD diagnosis and received chronic dialysis from 2005 through 2014 at Indiana University outpatient dialysis centers. We analyzed patients' data from electronic medical records systems that collated information from multiple health care sources. Previously utilized algorithms or natural language processing was used to extract data on 10 comorbidities for a period of up to 10 years prior to ESRD incidence. These algorithms incorporate billing codes, prescriptions, and other relevant elements. We compared the presence or unchecked status of these comorbidities on the forms to the presence or absence according to the algorithms. Findings: Computer algorithms had higher reporting of comorbidities compared to forms completion by physicians. This remained true when decreasing data span to one year and using only a single health center source. The algorithms determination was well accepted by a physician panel. Importantly, algorithms use significantly increased the expected deaths and lowered the standardized mortality ratios. Discussion: Using computer algorithms showed superior identification of comorbidities for form CMS-2728 and altered standardized mortality ratios. Adapting similar algorithms in available EMR systems may offer more thorough evaluation of comorbidities and improve quality reporting.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Malas, M. S., Wish, J., Moorthi, R., Grannis, S., Dexter, P., Duke, J., & Moe, S. (2017). A comparison between physicians and computer algorithms for form CMS-2728 data reporting. Hemodialysis International. https://doi.org/10.1111/hdi.12445
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Hemodialysis International
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}