Mast Cells Promote Nonalcoholic Fatty Liver Disease Phenotypes and Microvesicular Steatosis in Mice Fed a Western Diet

dc.contributor.authorKennedy, Lindsey
dc.contributor.authorMeadows, Vik
dc.contributor.authorSybenga, Amelia
dc.contributor.authorDemieville, Jennifer
dc.contributor.authorChen, Lixian
dc.contributor.authorHargrove, Laura
dc.contributor.authorEkser, Burcin
dc.contributor.authorDar, Wasim
dc.contributor.authorCeci, Ludovica
dc.contributor.authorKundu, Debjyoti
dc.contributor.authorKyritsi, Konstantina
dc.contributor.authorPham, Linh
dc.contributor.authorZhou, Tianhao
dc.contributor.authorGlaser, Shannon
dc.contributor.authorMeng, Fanyin
dc.contributor.authorAlpini, Gianfranco
dc.contributor.authorFrancis, Heather
dc.contributor.departmentMedicine, School of Medicineen_US
dc.date.accessioned2023-07-18T17:01:55Z
dc.date.available2023-07-18T17:01:55Z
dc.date.issued2021
dc.description.abstractBackground and aims: Nonalcoholic fatty liver disease (NAFLD) is simple steatosis but can develop into nonalcoholic steatohepatitis (NASH), characterized by liver inflammation, fibrosis, and microvesicular steatosis. Mast cells (MCs) infiltrate the liver during cholestasis and promote ductular reaction (DR), biliary senescence, and liver fibrosis. We aimed to determine the effects of MC depletion during NAFLD/NASH. Approach and results: Wild-type (WT) and KitW-sh (MC-deficient) mice were fed a control diet (CD) or a Western diet (WD) for 16 weeks; select WT and KitW-sh WD mice received tail vein injections of MCs 2 times per week for 2 weeks prior to sacrifice. Human samples were collected from normal, NAFLD, or NASH mice. Cholangiocytes from WT WD mice and human NASH have increased insulin-like growth factor 1 expression that promotes MC migration/activation. Enhanced MC presence was noted in WT WD mice and human NASH, along with increased DR. WT WD mice had significantly increased steatosis, DR/biliary senescence, inflammation, liver fibrosis, and angiogenesis compared to WT CD mice, which was significantly reduced in KitW-sh WD mice. Loss of MCs prominently reduced microvesicular steatosis in zone 1 hepatocytes. MC injection promoted WD-induced biliary and liver damage and specifically up-regulated microvesicular steatosis in zone 1 hepatocytes. Aldehyde dehydrogenase 1 family, member A3 (ALDH1A3) expression is reduced in WT WD mice and human NASH but increased in KitW-sh WD mice. MicroRNA 144-3 prime (miR-144-3p) expression was increased in WT WD mice and human NASH but reduced in KitW-sh WD mice and was found to target ALDH1A3. Conclusions: MCs promote WD-induced biliary and liver damage and may promote microvesicular steatosis development during NAFLD progression to NASH through miR-144-3p/ALDH1A3 signaling. Inhibition of MC activation may be a therapeutic option for NAFLD/NASH treatment.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationKennedy L, Meadows V, Sybenga A, et al. Mast Cells Promote Nonalcoholic Fatty Liver Disease Phenotypes and Microvesicular Steatosis in Mice Fed a Western Diet. Hepatology. 2021;74(1):164-182. doi:10.1002/hep.31713en_US
dc.identifier.urihttps://hdl.handle.net/1805/34478
dc.language.isoen_USen_US
dc.publisherWolters Kluweren_US
dc.relation.isversionof10.1002/hep.31713en_US
dc.relation.journalHepatologyen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectAldehyde oxidoreductasesen_US
dc.subjectBiliary tracten_US
dc.subjectGene expression regulationen_US
dc.subjectLiver cirrhosisen_US
dc.subjectMast cellsen_US
dc.subjectNon-alcoholic fatty liver diseaseen_US
dc.titleMast Cells Promote Nonalcoholic Fatty Liver Disease Phenotypes and Microvesicular Steatosis in Mice Fed a Western Dieten_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms-1819811.pdf
Size:
4.19 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: