On Some Hamiltonian Properties of the Isomonodromic Tau Functions

dc.contributor.authorIts, Alexander R.
dc.contributor.authorProkhorov, A.
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2019-04-04T19:54:49Z
dc.date.available2019-04-04T19:54:49Z
dc.date.issued2018-08
dc.description.abstractWe discuss some new aspects of the theory of the Jimbo–Miwa–Ueno tau function which have come to light within the recent developments in the global asymptotic analysis of the tau functions related to the Painlevé equations. Specifically, we show that up to the total differentials the logarithmic derivatives of the Painlevé tau functions coincide with the corresponding classical action differential. This fact simplifies considerably the evaluation of the constant factors in the asymptotics of tau functions, which has been a long-standing problem of the asymptotic theory of Painlevé equations. Furthermore, we believe that this observation is yet another manifestation of L. D. Faddeev’s emphasis of the key role which the Hamiltonian aspects play in the theory of integrable system.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationIts, A. R., & Prokhorov, A. (2018). On some Hamiltonian properties of the isomonodromic tau functions. Reviews in Mathematical Physics, 30(07), 1840008. https://doi.org/10.1142/S0129055X18400081en_US
dc.identifier.urihttps://hdl.handle.net/1805/18793
dc.language.isoenen_US
dc.publisherWorld Scientificen_US
dc.relation.isversionof10.1142/S0129055X18400081en_US
dc.relation.journalReviews in Mathematical Physicsen_US
dc.rightsPublisher Policyen_US
dc.sourceArXiven_US
dc.subjecttau functionsen_US
dc.subjectPainlevé equationsen_US
dc.subjectHamiltonian aspectsen_US
dc.titleOn Some Hamiltonian Properties of the Isomonodromic Tau Functionsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Its_2018_on.pdf
Size:
353.66 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: