On LR2-best rational approximants to Markov functions on several intervals

dc.contributor.authorYattselev, Maxim L.
dc.contributor.departmentMathematical Sciences, School of Science
dc.date.accessioned2023-12-01T17:33:07Z
dc.date.available2023-12-01T17:33:07Z
dc.date.issued2022-06
dc.description.abstractLet f(z)=∫(z−x)−1dμ(x), where μ is a Borel measure supported on several subintervals of (−1,1) with smooth Radon–Nikodym derivative. We study strong asymptotic behavior of the error of approximation (f−rn)(z), where rn(z) is the LR2-best rational approximant to f(z) on the unit circle with n poles inside the unit disk.
dc.eprint.versionFinal published version
dc.identifier.citationYattselev, M. L. (2022). On LR2-best rational approximants to Markov functions on several intervals. Journal of Approximation Theory, 278, 105738. https://doi.org/10.1016/j.jat.2022.105738
dc.identifier.urihttps://hdl.handle.net/1805/37258
dc.language.isoen_US
dc.publisherElsevier
dc.relation.isversionof10.1016/j.jat.2022.105738
dc.relation.journalJournal of Approximation Theory
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArXiv
dc.subjectL2-best rational approximation
dc.subjectstrong asymptotics
dc.titleOn LR2-best rational approximants to Markov functions on several intervals
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yattselev2022OnL2R-CCBY.pdf
Size:
354.23 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: