RAD51 regulates eukaryotic chromatin motions in the absence of DNA damage

Date
2024
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Society for Cell Biology
Abstract

In yeasts and higher eukaryotes, chromatin motions may be tuned to genomic functions, with transcriptional activation and the DNA damage response both leading to profound changes in chromatin dynamics. The RAD51 recombinase is a key mediator of chromatin mobility following DNA damage. As functions of RAD51 beyond DNA repair are being discovered, we asked whether RAD51 modulates chromatin dynamics in the absence of DNA damage and found that inhibition or depletion of RAD51 alters chromatin motions in undamaged cells. Inhibition of RAD51 increased nucleosome clustering. Predictions from polymer models are that chromatin clusters reduce chain mobility and, indeed, we measured reduced motion of individual chromatin loci in cells treated with a RAD51 inhibitor. This effect was conserved in mammalian cells, yeasts, and plant cells. In contrast, RAD51 depletion or inhibition increased global chromatin motions at the microscale. The results uncover a role for RAD51 in regulating local and global chromatin dynamics independently from DNA damage and highlight the importance of considering different physical scales when studying chromatin dynamics.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Maarouf A, Iqbal F, Sanaullah S, et al. RAD51 regulates eukaryotic chromatin motions in the absence of DNA damage. Mol Biol Cell. 2024;35(11):ar136. doi:10.1091/mbc.E24-04-0188
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Molecular Biology of the Cell
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}