Toward Data-Driven Radiology Education—Early Experience Building Multi-Institutional Academic Trainee Interpretation Log Database (MATILDA)

dc.contributor.authorChen, Po-Hao
dc.contributor.authorLoehfelm, Thomas W.
dc.contributor.authorKamer, Aaron P.
dc.contributor.authorLemmon, Andrew B.
dc.contributor.authorCook, Tessa S.
dc.contributor.authorKohli, Marc D.
dc.contributor.departmentRadiology and Imaging Sciences, School of Medicineen_US
dc.date.accessioned2018-06-08T17:50:28Z
dc.date.available2018-06-08T17:50:28Z
dc.date.issued2016-12
dc.description.abstractThe residency review committee of the Accreditation Council of Graduate Medical Education (ACGME) collects data on resident exam volume and sets minimum requirements. However, this data is not made readily available, and the ACGME does not share their tools or methodology. It is therefore difficult to assess the integrity of the data and determine if it truly reflects relevant aspects of the resident experience. This manuscript describes our experience creating a multi-institutional case log, incorporating data from three American diagnostic radiology residency programs. Each of the three sites independently established automated query pipelines from the various radiology information systems in their respective hospital groups, thereby creating a resident-specific database. Then, the three institutional resident case log databases were aggregated into a single centralized database schema. Three hundred thirty residents and 2,905,923 radiologic examinations over a 4-year span were catalogued using 11 ACGME categories. Our experience highlights big data challenges including internal data heterogeneity and external data discrepancies faced by informatics researchers.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationChen, P.-H., Loehfelm, T. W., Kamer, A. P., Lemmon, A. B., Cook, T. S., & Kohli, M. D. (2016). Toward Data-Driven Radiology Education—Early Experience Building Multi-Institutional Academic Trainee Interpretation Log Database (MATILDA). Journal of Digital Imaging, 29(6), 638–644. https://doi.org/10.1007/s10278-016-9872-2en_US
dc.identifier.issn0897-1889en_US
dc.identifier.urihttps://hdl.handle.net/1805/16436
dc.language.isoen_USen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s10278-016-9872-2en_US
dc.relation.journalJournal of Digital Imagingen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectACGMEen_US
dc.subjectAnalyticsen_US
dc.subjectBig dataen_US
dc.subjectCase logen_US
dc.subjectDatabaseen_US
dc.subjectEducationen_US
dc.subjectRadiology trainingen_US
dc.subjectResidencyen_US
dc.titleToward Data-Driven Radiology Education—Early Experience Building Multi-Institutional Academic Trainee Interpretation Log Database (MATILDA)en_US
dc.typeArticleen_US
ul.alternative.fulltexthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5114223/pdf/10278_2016_Article_9872.pdfen_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
10278_2016_Article_9872.pdf
Size:
646.04 KB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: