PTHrP-Derived Peptides Restore Bone Mass and Strength in Diabetic Mice: Additive Effect of Mechanical Loading

dc.contributor.authorMaycas, Marta
dc.contributor.authorMcAndrews, Kevin A.
dc.contributor.authorSato, Amy Y.
dc.contributor.authorPellegrini, Gretel G.
dc.contributor.authorBrown, Drew M.
dc.contributor.authorAllen, Matthew R.
dc.contributor.authorPlotkin, Lilian I.
dc.contributor.authorGortazar, Arancha R.
dc.contributor.authorEsbrit, Pedro
dc.contributor.authorBellido, Teresita
dc.contributor.departmentDepartment of Anatomy and Cell Biology, School of Medicineen_US
dc.date.accessioned2017-08-30T16:21:35Z
dc.date.available2017-08-30T16:21:35Z
dc.date.issued2017-03
dc.description.abstractThere is an unmet need to understand the mechanisms underlying skeletal deterioration in diabetes mellitus (DM) and to develop therapeutic approaches to treat bone fragility in diabetic patients. We demonstrate herein that mice with type 1 DM induced by streptozotocin exhibited low bone mass, inferior mechanical and material properties, increased bone resorption, decreased bone formation, increased apoptosis of osteocytes, and increased expression of the osteocyte-derived bone formation inhibitor Sost/sclerostin. Further, short treatment of diabetic mice with parathyroid hormone related protein (PTHrP)-derived peptides corrected these changes to levels undistinguishable from non-diabetic mice. In addition, diabetic mice exhibited reduced bone formation in response to mechanical stimulation, which was corrected by treatment with the PTHrP peptides, and higher prevalence of apoptotic osteocytes, which was reduced by loading or by the PTHrP peptides alone and reversed by a combination of loading and PTHrP peptide treatment. In vitro experiments demonstrated that the PTHrP peptides or mechanical stimulation by fluid flow activated the survival kinases ERKs and induced nuclear translocation of the canonical Wnt signaling mediator β-catenin, and prevented the increase in osteocytic cell apoptosis induced by high glucose. Thus, PTHrP-derived peptides cross-talk with mechanical signaling pathways to reverse skeletal deterioration induced by DM in mice. These findings suggest a crucial role of osteocytes in the harmful effects of diabetes on bone and raise the possibility of targeting these cells as a novel approach to treat skeletal deterioration in diabetes. Moreover, our study suggests the potential therapeutic efficacy of combined pharmacological and mechanical stimuli to promote bone accrual and maintenance in diabetic subjects.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationMaycas, M., McAndrews, K. A., Sato, A. Y., Pellegrini, G. G., Brown, D. M., Allen, M. R., ... & Bellido, T. (2017). PTHrP‐Derived Peptides Restore Bone Mass and Strength in Diabetic Mice: Additive Effect of Mechanical Loading. Journal of Bone and Mineral Research, 32(3), 486-497. https://doi.org/10.1002/jbmr.3007en_US
dc.identifier.urihttps://hdl.handle.net/1805/13972
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.isversionof10.1002/jbmr.3007en_US
dc.relation.journalJournal of Bone and Mineral Researchen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectdiabetesen_US
dc.subjectosteocytesen_US
dc.subjectSost/sclerostinen_US
dc.titlePTHrP-Derived Peptides Restore Bone Mass and Strength in Diabetic Mice: Additive Effect of Mechanical Loadingen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Maycas_2016_PTHrP.pdf
Size:
778.95 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: