BMAL1 Overexpression in Suprachiasmatic Nucleus Protects from Retinal Neurovascular Deficits in Diabetes

Date
2025-02-06
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
bioRxiv
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

The suprachiasmatic nucleus (SCN) regulates circadian rhythms and influences physiological and behavioral processes. Disruptions in circadian rhythms (CRD) are observed in type 2 diabetes (T2D), and importantly, CRD acts as an independent risk factor for T2D and its associated complications. BMAL1, a circadian clock gene, is vital for sustaining an optimal circadian rhythm and physiological function. However, the therapeutic potential of BMAL1 overexpression in the SCN to rectify the neurovascular deficits of T2D has yet to be investigated. In this study, db/db mice, a well-established model of T2D exhibiting arrhythmic behavior and the complications of diabetes, were injected stereotaxically with AAV8-Bmal1 or a control virus in the SCN to evaluate the protective effects of correcting the central clock on neurovascular deficits. Given the complex neurovascular network and the eye's unique accessibility as a transparent system, ocular complications were selected as a model to examine the neuronal functional, behavioral, and vascular benefits of correcting the central clock. BMAL1 overexpression normalized the circadian rhythms, as demonstrated by improvements in the free-running period. The retinal neuronal function improved on electroretinogram, along with optomotor behavior and visual acuity enhancements. Retinal vascular deficits were also significantly reduced. Notably, our approach helped decrease fat content in genetically predisposed obese animals. Since the SCN is known to regulate hepatic glucose production via sympathetic mechanisms, glycemic control, and pyruvate tolerance tests were conducted. Systemically, we observed improved glucose homeostasis in BMAL1-overexpressing mice alongside a substantial reduction in hepatic gluconeogenesis. BMAL1 overexpression lowered plasma norepinephrine and liver TH levels, indicating a protective regulation of adrenergic signaling. Thus, this study underscores the therapeutic potential of targeting circadian clock genes like BMAL1 in the SCN to alleviate metabolic and neurovascular deficits associated with T2D. Our research offers a compelling framework for integrating circadian rhythms into managing diabetes and its complications.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Mahajan N, Luo Q, Lukkes J, Abhyankar SD, Bhatwadekar AD. BMAL1 Overexpression in Suprachiasmatic Nucleus Protects from Retinal Neurovascular Deficits in Diabetes. Preprint. bioRxiv. 2025;2025.02.05.636648. Published 2025 Feb 6. doi:10.1101/2025.02.05.636648
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Preprint
Full Text Available at
This item is under embargo {{howLong}}