Lysine Acetylation Is Widespread on Proteins of Diverse Function and Localization in the Protozoan Parasite Toxoplasma gondii

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2012
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Society for Microbiology
Abstract

While histone proteins are the founding members of lysine acetylation substrates, it is now clear that hundreds of other proteins can be acetylated in multiple compartments of the cell. Our knowledge of the scope of this modification throughout the kingdom of life is beginning to emerge, as proteome-wide lysine acetylation has been documented in prokaryotes, Arabidopsis thaliana, Drosophila melanogaster, and human cells. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify parasite peptides enriched by immunopurification with acetyl-lysine antibody, we produced the first proteome-wide analysis of acetylation for a protozoan organism, the opportunistic apicomplexan parasite Toxoplasma gondii. The results show that lysine acetylation is abundant in the actively proliferating tachyzoite form of the parasite, which causes acute toxoplasmosis. Our approach successfully identified known acetylation marks on Toxoplasma histones and α-tubulin and detected over 400 novel acetylation sites on a wide variety of additional proteins, including those with roles in transcription, translation, metabolism, and stress responses. Importantly, an extensive set of parasite-specific proteins, including those found in organelles unique to Apicomplexa, is acetylated in the parasite. Our data provide a wealth of new information that improves our understanding of the evolution of this vital regulatory modification while potentially revealing novel therapeutic avenues. We conclude from this study that lysine acetylation was prevalent in the early stages of eukaryotic cell evolution and occurs on proteins involved in a remarkably diverse array of cellular functions, including those that are specific to parasites.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Jeffers V, Sullivan WJ Jr. Lysine acetylation is widespread on proteins of diverse function and localization in the protozoan parasite Toxoplasma gondii. Eukaryot Cell. 2012;11(6):735-742. doi:10.1128/EC.00088-12
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Eukaryotic Cell
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
This item is under embargo {{howLong}}