The Brain Tumor Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI

dc.contributor.authorMoawad, Ahmed W.
dc.contributor.authorJanas, Anastasia
dc.contributor.authorBaid, Ujjwal
dc.contributor.authorRamakrishnan, Divya
dc.contributor.authorJekel, Leon
dc.contributor.authorKrantchev, Kiril
dc.contributor.authorMoy, Harrison
dc.contributor.authorSaluja, Rachit
dc.contributor.authorOsenberg, Klara
dc.contributor.authorWilms, Klara
dc.contributor.authorKaur, Manpreet
dc.contributor.authorAvesta, Arman
dc.contributor.authorCassinelli Pedersen, Gabriel
dc.contributor.authorMaleki, Nazanin
dc.contributor.authorSalimi, Mahdi
dc.contributor.authorMerkaj, Sarah
dc.contributor.authorvon Reppert, Marc
dc.contributor.authorTillmans, Niklas
dc.contributor.authorLost, Jan
dc.contributor.authorBousabarah, Khaled
dc.contributor.authorHoller, Wolfgang
dc.contributor.authorLin, MingDe
dc.contributor.authorWesterhoff, Malte
dc.contributor.authorMaresca, Ryan
dc.contributor.authorLink, Katherine E.
dc.contributor.authorTahon, Nourel Hoda
dc.contributor.authorMarcus, Daniel
dc.contributor.authorSotiras, Aristeidis
dc.contributor.authorLaMontagne, Pamela
dc.contributor.authorChakrabarty, Strajit
dc.contributor.authorTeytelboym, Oleg
dc.contributor.authorYoussef, Ayda
dc.contributor.authorNada, Ayaman
dc.contributor.authorVelichko, Yuri S.
dc.contributor.authorGennaro, Nicolo
dc.contributor.authorConnectome Students
dc.contributor.authorGroup of Annotators
dc.contributor.authorCramer, Justin
dc.contributor.authorJohnson, Derek R.
dc.contributor.authorKwan, Benjamin Y. M.
dc.contributor.authorPetrovic, Boyan
dc.contributor.authorPatro, Satya N.
dc.contributor.authorWu, Lei
dc.contributor.authorSo, Tiffany
dc.contributor.authorThompson, Gerry
dc.contributor.authorKam, Anthony
dc.contributor.authorGuzman Perez-Carrillo, Gloria
dc.contributor.authorLall, Neil
dc.contributor.authorGroup of Approvers
dc.contributor.authorAlbrecht, Jake
dc.contributor.authorAnazodo, Udunna
dc.contributor.authorLingaru, Marius George
dc.contributor.authorMenze, Bjoern H.
dc.contributor.authorWiestler, Benedikt
dc.contributor.authorAdewole, Maruf
dc.contributor.authorAnwar, Syed Muhammad
dc.contributor.authorLabella, Dominic
dc.contributor.authorLi, Hongwei Bran
dc.contributor.authorIglesias, Juan Eugenio
dc.contributor.authorFarahani, Keyvan
dc.contributor.authorEddy, James
dc.contributor.authorBergquist, Timothy
dc.contributor.authorChung, Verena
dc.contributor.authorShinohara, Russel Takeshi
dc.contributor.authorDako, Farouk
dc.contributor.authorWiggins, Walter
dc.contributor.authorReitman, Zachary
dc.contributor.authorWang, Chunhao
dc.contributor.authorLiu, Xinyang
dc.contributor.authorJiang, Zhifan
dc.contributor.authorVan Leemput, Koen
dc.contributor.authorPiraud, Marie
dc.contributor.authorEzhov, Ivan
dc.contributor.authorJohanson, Elaine
dc.contributor.authorMeier, Zeke
dc.contributor.authorFamiliar, Ariana
dc.contributor.authorKazerooni, Anahita Fathi
dc.contributor.authorKofler, Florian
dc.contributor.authorCalabrese, Evan
dc.contributor.authorAneja, Sanjay
dc.contributor.authorChiang, Veronica
dc.contributor.authorIkuta, Ichiro
dc.contributor.authorShafique, Umber
dc.contributor.authorMemon, Fatima
dc.contributor.authorConte, Gian Marco
dc.contributor.authorBakas, Spyridon
dc.contributor.authorRudie, Jeffrey
dc.contributor.authorAboian, Mariam
dc.contributor.departmentRadiology and Imaging Sciences, School of Medicine
dc.date.accessioned2024-02-14T14:49:56Z
dc.date.available2024-02-14T14:49:56Z
dc.date.issued2023-06-01
dc.description.abstractClinical monitoring of metastatic disease to the brain can be a laborious and timeconsuming process, especially in cases involving multiple metastases when the assessment is performed manually. The Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) guideline, which utilizes the unidimensional longest diameter, is commonly used in clinical and research settings to evaluate response to therapy in patients with brain metastases. However, accurate volumetric assessment of the lesion and surrounding peri-lesional edema holds significant importance in clinical decision-making and can greatly enhance outcome prediction. The unique challenge in performing segmentations of brain metastases lies in their common occurrence as small lesions. Detection and segmentation of lesions that are smaller than 10 mm in size has not demonstrated high accuracy in prior publications. The brain metastases challenge sets itself apart from previously conducted MICCAI challenges on glioma segmentation due to the significant variability in lesion size. Unlike gliomas, which tend to be larger on presentation scans, brain metastases exhibit a wide range of sizes and tend to include small lesions. We hope that the BraTS-METS dataset and challenge will advance the field of automated brain metastasis detection and segmentation.
dc.eprint.versionPre-Print
dc.identifier.citationMoawad AW, Janas A, Baid U, et al. The Brain Tumor Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI. Preprint. ArXiv. 2023;arXiv:2306.00838v1. Published 2023 Jun 1.
dc.identifier.urihttps://hdl.handle.net/1805/38481
dc.language.isoen_US
dc.publisherArXiv
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourcePMC
dc.subjectAI
dc.subjectBraTS
dc.subjectBraTS-METS
dc.subjectArtificial intelligence
dc.subjectBrain
dc.subjectChallenge
dc.subjectMachine learning
dc.subjectSegmentation
dc.subjectTumor
dc.titleThe Brain Tumor Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihpp-2306.00838v1.pdf
Size:
793.35 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: