A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies
dc.contributor.author | Li, Zilin | |
dc.contributor.author | Li, Xihao | |
dc.contributor.author | Zhou, Hufeng | |
dc.contributor.author | Gaynor, Sheila M. | |
dc.contributor.author | Selvaraj, Margaret Sunitha | |
dc.contributor.author | Arapoglou, Theodore | |
dc.contributor.author | Quick, Corbin | |
dc.contributor.author | Liu, Yaowu | |
dc.contributor.author | Chen, Han | |
dc.contributor.author | Sun, Ryan | |
dc.contributor.author | Dey, Rounak | |
dc.contributor.author | Arnett, Donna K. | |
dc.contributor.author | Auer, Paul L. | |
dc.contributor.author | Bielak, Lawrence F. | |
dc.contributor.author | Bis, Joshua C. | |
dc.contributor.author | Blackwell, Thomas W. | |
dc.contributor.author | Blangero, John | |
dc.contributor.author | Boerwinkle, Eric | |
dc.contributor.author | Bowden, Donald W. | |
dc.contributor.author | Brody, Jennifer A. | |
dc.contributor.author | Cade, Brian E. | |
dc.contributor.author | Conomos, Matthew P. | |
dc.contributor.author | Correa, Adolfo | |
dc.contributor.author | Cupples, L. Adrienne | |
dc.contributor.author | Curran, Joanne E. | |
dc.contributor.author | de Vries, Paul S. | |
dc.contributor.author | Duggirala, Ravindranath | |
dc.contributor.author | Franceschini, Nora | |
dc.contributor.author | Freedman, Barry I. | |
dc.contributor.author | Göring, Harald H. H. | |
dc.contributor.author | Guo, Xiuqing | |
dc.contributor.author | Kalyani, Rita R. | |
dc.contributor.author | Kooperberg, Charles | |
dc.contributor.author | Kral, Brian G. | |
dc.contributor.author | Lange, Leslie A. | |
dc.contributor.author | Lin, Bridget M. | |
dc.contributor.author | Manichaikul, Ani | |
dc.contributor.author | Manning, Alisa K. | |
dc.contributor.author | Martin, Lisa W. | |
dc.contributor.author | Mathias, Rasika A. | |
dc.contributor.author | Meigs, James B. | |
dc.contributor.author | Mitchell, Braxton D. | |
dc.contributor.author | Montasser, May E. | |
dc.contributor.author | Morrison, Alanna C. | |
dc.contributor.author | Naseri, Take | |
dc.contributor.author | O'Connell, Jeffrey R. | |
dc.contributor.author | Palmer, Nicholette D. | |
dc.contributor.author | Peyser, Patricia A. | |
dc.contributor.author | Psaty, Bruce M. | |
dc.contributor.author | Raffield, Laura M. | |
dc.contributor.author | Redline, Susan | |
dc.contributor.author | Reiner, Alexander P. | |
dc.contributor.author | Reupena, Muagututi'a Sefuiva | |
dc.contributor.author | Rice, Kenneth M. | |
dc.contributor.author | Rich, Stephen S. | |
dc.contributor.author | Smith, Jennifer A. | |
dc.contributor.author | Taylor, Kent D. | |
dc.contributor.author | Taub, Margaret A. | |
dc.contributor.author | Vasan, Ramachandran S. | |
dc.contributor.author | Weeks, Daniel E. | |
dc.contributor.author | Wilson, James G. | |
dc.contributor.author | Yanek, Lisa R. | |
dc.contributor.author | Zhao, Wei | |
dc.contributor.author | NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium | |
dc.contributor.author | TOPMed Lipids Working Group | |
dc.contributor.author | Rotter, Jerome I. | |
dc.contributor.author | Willer, Cristen J. | |
dc.contributor.author | Natarajan, Pradeep | |
dc.contributor.author | Peloso, Gina M. | |
dc.contributor.author | Lin, Xihong | |
dc.contributor.department | Biostatistics and Health Data Science, School of Medicine | |
dc.date.accessioned | 2023-11-16T11:46:01Z | |
dc.date.available | 2023-11-16T11:46:01Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits. | |
dc.eprint.version | Author's manuscript | |
dc.identifier.citation | Li Z, Li X, Zhou H, et al. A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies. Nat Methods. 2022;19(12):1599-1611. doi:10.1038/s41592-022-01640-x | |
dc.identifier.uri | https://hdl.handle.net/1805/37076 | |
dc.language.iso | en_US | |
dc.publisher | Springer Nature | |
dc.relation.isversionof | 10.1038/s41592-022-01640-x | |
dc.relation.journal | Nature Methods | |
dc.rights | Publisher Policy | |
dc.source | PMC | |
dc.subject | Genetic variation | |
dc.subject | Genome | |
dc.subject | Genome-wide association study | |
dc.subject | Phenotype | |
dc.subject | Whole genome sequencing | |
dc.title | A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies | |
dc.type | Article |