A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies

dc.contributor.authorLi, Zilin
dc.contributor.authorLi, Xihao
dc.contributor.authorZhou, Hufeng
dc.contributor.authorGaynor, Sheila M.
dc.contributor.authorSelvaraj, Margaret Sunitha
dc.contributor.authorArapoglou, Theodore
dc.contributor.authorQuick, Corbin
dc.contributor.authorLiu, Yaowu
dc.contributor.authorChen, Han
dc.contributor.authorSun, Ryan
dc.contributor.authorDey, Rounak
dc.contributor.authorArnett, Donna K.
dc.contributor.authorAuer, Paul L.
dc.contributor.authorBielak, Lawrence F.
dc.contributor.authorBis, Joshua C.
dc.contributor.authorBlackwell, Thomas W.
dc.contributor.authorBlangero, John
dc.contributor.authorBoerwinkle, Eric
dc.contributor.authorBowden, Donald W.
dc.contributor.authorBrody, Jennifer A.
dc.contributor.authorCade, Brian E.
dc.contributor.authorConomos, Matthew P.
dc.contributor.authorCorrea, Adolfo
dc.contributor.authorCupples, L. Adrienne
dc.contributor.authorCurran, Joanne E.
dc.contributor.authorde Vries, Paul S.
dc.contributor.authorDuggirala, Ravindranath
dc.contributor.authorFranceschini, Nora
dc.contributor.authorFreedman, Barry I.
dc.contributor.authorGöring, Harald H. H.
dc.contributor.authorGuo, Xiuqing
dc.contributor.authorKalyani, Rita R.
dc.contributor.authorKooperberg, Charles
dc.contributor.authorKral, Brian G.
dc.contributor.authorLange, Leslie A.
dc.contributor.authorLin, Bridget M.
dc.contributor.authorManichaikul, Ani
dc.contributor.authorManning, Alisa K.
dc.contributor.authorMartin, Lisa W.
dc.contributor.authorMathias, Rasika A.
dc.contributor.authorMeigs, James B.
dc.contributor.authorMitchell, Braxton D.
dc.contributor.authorMontasser, May E.
dc.contributor.authorMorrison, Alanna C.
dc.contributor.authorNaseri, Take
dc.contributor.authorO'Connell, Jeffrey R.
dc.contributor.authorPalmer, Nicholette D.
dc.contributor.authorPeyser, Patricia A.
dc.contributor.authorPsaty, Bruce M.
dc.contributor.authorRaffield, Laura M.
dc.contributor.authorRedline, Susan
dc.contributor.authorReiner, Alexander P.
dc.contributor.authorReupena, Muagututi'a Sefuiva
dc.contributor.authorRice, Kenneth M.
dc.contributor.authorRich, Stephen S.
dc.contributor.authorSmith, Jennifer A.
dc.contributor.authorTaylor, Kent D.
dc.contributor.authorTaub, Margaret A.
dc.contributor.authorVasan, Ramachandran S.
dc.contributor.authorWeeks, Daniel E.
dc.contributor.authorWilson, James G.
dc.contributor.authorYanek, Lisa R.
dc.contributor.authorZhao, Wei
dc.contributor.authorNHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium
dc.contributor.authorTOPMed Lipids Working Group
dc.contributor.authorRotter, Jerome I.
dc.contributor.authorWiller, Cristen J.
dc.contributor.authorNatarajan, Pradeep
dc.contributor.authorPeloso, Gina M.
dc.contributor.authorLin, Xihong
dc.contributor.departmentBiostatistics and Health Data Science, School of Medicine
dc.date.accessioned2023-11-16T11:46:01Z
dc.date.available2023-11-16T11:46:01Z
dc.date.issued2022
dc.description.abstractLarge-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.
dc.eprint.versionAuthor's manuscript
dc.identifier.citationLi Z, Li X, Zhou H, et al. A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies. Nat Methods. 2022;19(12):1599-1611. doi:10.1038/s41592-022-01640-x
dc.identifier.urihttps://hdl.handle.net/1805/37076
dc.language.isoen_US
dc.publisherSpringer Nature
dc.relation.isversionof10.1038/s41592-022-01640-x
dc.relation.journalNature Methods
dc.rightsPublisher Policy
dc.sourcePMC
dc.subjectGenetic variation
dc.subjectGenome
dc.subjectGenome-wide association study
dc.subjectPhenotype
dc.subjectWhole genome sequencing
dc.titleA framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms-1862492.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: