Doubly Polarized QM/MM with Machine Learning Chaperone Polarizability

dc.contributor.authorKim, Bryant
dc.contributor.authorShao, Yihan
dc.contributor.authorPu, Jingzhi
dc.contributor.departmentChemistry and Chemical Biology, School of Science
dc.date.accessioned2023-10-02T12:05:00Z
dc.date.available2023-10-02T12:05:00Z
dc.date.issued2021
dc.description.abstractA major shortcoming of semiempirical (SE) molecular orbital methods is their severe underestimation of molecular polarizability compared with experimental and ab initio (AI) benchmark data. In a combined quantum mechanical and molecular mechanical (QM/MM) treatment of solution-phase reactions, solute described by SE methods therefore tends to generate inadequate electronic polarization response to solvent electric fields, which often leads to large errors in free energy profiles. To address this problem, here we present a hybrid framework that improves the response property of SE/MM methods through high-level molecular-polarizability fitting. Specifically, we place on QM atoms a set of corrective polarizabilities (referred to as chaperone polarizabilities), whose magnitudes are determined from machine learning (ML) to reproduce the condensed-phase AI molecular polarizability along the minimum free energy path. These chaperone polarizabilities are then used in a machinery similar to a polarizable force field calculation to compensate for the missing polarization energy in the conventional SE/MM simulations. Because QM atoms in this treatment host SE wave functions as well as classical polarizabilities, both polarized by MM electric fields, we name this method doubly polarized QM/MM (dp-QM/MM). We demonstrate the new method on the free energy simulations of the Menshutkin reaction in water. Using AM1/MM as a base method, we show that ML chaperones greatly reduce the error in the solute molecular polarizability from 6.78 to 0.03 Å3 with respect to the density functional theory benchmark. The chaperone correction leads to ~10 kcal/mol of additional polarization energy in the product region, bringing the simulated free energy profiles to closer agreement with the experimental results. Furthermore, the solute-solvent radial distribution functions show that the chaperone polarizabilities modify the free energy profiles through enhanced solvation corrections when the system evolves from the charge-neutral reactant state to the charge-separated transition and product states. These results suggest that the dp-QM/MM method, enabled by ML chaperone polarizabilities, provides a very physical remedy for the underpolarization problem in SE/MM-based free energy simulations.
dc.eprint.versionAuthor's manuscript
dc.identifier.citationKim B, Shao Y, Pu J. Doubly Polarized QM/MM with Machine Learning Chaperone Polarizability. J Chem Theory Comput. 2021;17(12):7682-7695. doi:10.1021/acs.jctc.1c00567
dc.identifier.urihttps://hdl.handle.net/1805/35921
dc.language.isoen_US
dc.publisherAmerican Chemical Society
dc.relation.isversionof10.1021/acs.jctc.1c00567
dc.relation.journalJournal of Chemical Theory and Computation
dc.rightsPublisher Policy
dc.sourcePMC
dc.subjectChemical reactions
dc.subjectFree energy
dc.subjectPolarizability
dc.subjectPolarization
dc.subjectSolution chemistry
dc.titleDoubly Polarized QM/MM with Machine Learning Chaperone Polarizability
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms-1790285.pdf
Size:
2.03 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: