Counting Preimages

dc.contributor.authorMisiurewicz, Michal
dc.contributor.authorRodrigues, Ana
dc.contributor.departmentDepartment of Mathematical Sciences, School of Scienceen_US
dc.date.accessioned2017-10-27T16:14:26Z
dc.date.available2017-10-27T16:14:26Z
dc.date.issued2017
dc.description.abstractFor non-invertible maps, subshifts that are mainly of finite type and piecewise monotone interval maps, we investigate what happens if we follow backward trajectories, which are random in the sense that, at each step, every preimage can be chosen with equal probability. In particular, we ask what happens if we try to compute the entropy this way. It turns out that, instead of the topological entropy, we get the metric entropy of a special measure, which we call the fair measure. In general, this entropy (the fair entropy) is smaller than the topological entropy. In such a way, for the systems that we consider, we get a new natural measure and a new invariant of topological conjugacy.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationMisiurewicz, M., & Rodrigues, A. (2017). Counting preimages. Ergodic Theory and Dynamical Systems, 1-20. https://doi.org/10.1017/etds.2016.103en_US
dc.identifier.urihttps://hdl.handle.net/1805/14390
dc.language.isoenen_US
dc.publisherCambridgeen_US
dc.relation.isversionof10.1017/etds.2016.103en_US
dc.relation.journalErgodic Theory and Dynamical Systemsen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectbackward trajectoriesen_US
dc.subjectentropyen_US
dc.subjectfair measureen_US
dc.titleCounting Preimagesen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Misiurewicz_2016_counting.pdf
Size:
254.4 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: