Probing osteocyte function in gelatin hydrogels with tunable viscoelasticity

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2021
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Chemical Society
Abstract

Bone is an attractive site for metastatic cancer cells and has been considered as "soil" for promoting tumor growth. However, accumulating evidence suggests that some bone cells (e.g., osteocytes) can actually suppress cancer cell migration and invasion via direct cell-cell contact and/or through cytokine secretion. Toward designing a biomimetic niche for supporting 3D osteocyte culture, we present here a gelatin-based hydrogel system with independently tunable matrix stiffness and viscoelasticity. In particular, we synthesized a bifunctional macromer, gelatin-norbornene-boronic acid (i.e., GelNB-BA), for covalent cross-linking with multifunctional thiol linkers [e.g., four-arm poly(ethylene glycol)-thiol or PEG4SH] to form thiol-NB hydrogels. The immobilized BA moieties in the hydrogel readily formed reversible boronate ester bonds with 1,3-diols on physically entrapped poly(vinyl alcohol) (PVA). Adjusting the compositions of GelNB-BA, PEG4SH, and PVA afforded hydrogels with independently tunable elasticity and viscoelasticity. With this new dynamic hydrogel platform, we investigated matrix mechanics-induced growth and cytokine secretion of encapsulated MLO-A5 pre-osteocytes. We discovered that more compliant or viscoelastic gels promoted A5 cell growth. On the other hand, cells encapsulated in stiffer gels secreted higher amounts of pro-inflammatory cytokines and chemokines. Finally, conditioned media (CM) collected from the encapsulated MLO-A5 cells (i.e., A5-CM) strongly inhibited breast cancer cell proliferation, invasion, and expression of tumor-activating genes. This new biomimetic hydrogel platform not only serves as a versatile matrix for investigating mechano-sensing in osteocytes but also provides a means to produce powerful anti-tumor CM.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Nguyen HD, Sun X, Yokota H, Lin CC. Probing Osteocyte Functions in Gelatin Hydrogels with Tunable Viscoelasticity. Biomacromolecules. 2021;22(3):1115-1126. doi:10.1021/acs.biomac.0c01476
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Biomacromolecules
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}