Gene-by-Diet Interactions Affect Serum 1,25-Dihydroxyvitamin D Levels in Male BXD Recombinant Inbred Mice

dc.contributor.authorFleet, James C.
dc.contributor.authorReplogle, Rebecca A.
dc.contributor.authorReyes-Fernandez, Perla
dc.contributor.authorWang, Libo
dc.contributor.authorZhang, Min
dc.contributor.authorClinkenbeard, Erica L.
dc.contributor.authorWhite, Kenneth E.
dc.contributor.departmentDepartment of Medical & Molecular Genetics, IU School of Medicineen_US
dc.date.accessioned2017-07-05T19:09:30Z
dc.date.available2017-07-05T19:09:30Z
dc.date.issued2016-02
dc.description.abstract1,25-Dihydroxyvitamin D (1,25[OH]2D) regulates calcium (Ca), phosphate, and bone metabolism. Serum 1,25(OH)2D levels are reduced by low vitamin D status and high fibroblast growth factor 23 (FGF23) levels and increased by low Ca intake and high PTH levels. Natural genetic variation controls serum 25-hydroxyvitamin D (25[OH]D) levels, but it is unclear how it controls serum 1,25(OH)2D or the response of serum 1,25(OH)2D levels to dietary Ca restriction (RCR). Male mice from 11 inbred lines and from 51 BXD recombinant inbred lines were fed diets with either 0.5% (basal) or 0.25% Ca from 4 to 12 weeks of age (n = 8 per line per diet). Significant variation among the lines was found in basal serum 1,25(OH)2D and in the RCR as well as basal serum 25(OH)D and FGF23 levels. 1,25(OH)2D was not correlated to 25(OH)D but was negatively correlated to FGF23 (r = -0.5). Narrow sense heritability of 1,25(OH)2D was 0.67 on the 0.5% Ca diet, 0.66 on the 0.25% Ca diet, and 0.59 for the RCR, indicating a strong genetic control of serum 1,25(OH)2D. Genetic mapping revealed many loci controlling 1,25(OH)2D (seven loci) and the RCR (three loci) as well as 25(OH)D (four loci) and FGF23 (two loci); a locus on chromosome 18 controlled both 1,25(OH)2D and FGF23. Candidate genes underlying loci include the following: Ets1 (1,25[OH]2D), Elac1 (FGF23 and 1,25[OH]2D), Tbc1d15 (RCR), Plekha8 and Lyplal1 (25[OH]D), and Trim35 (FGF23). This report is the first to reveal that serum 1,25(OH)2D levels are controlled by multiple genetic factors and that some of these genetic loci interact with the dietary environment.en_US
dc.identifier.citationFleet, J. C., Replogle, R. A., Reyes-Fernandez, P., Wang, L., Zhang, M., Clinkenbeard, E. L., & White, K. E. (2016). Gene-by-Diet Interactions Affect Serum 1,25-Dihydroxyvitamin D Levels in Male BXD Recombinant Inbred Mice. Endocrinology, 157(2), 470–481. http://doi.org/10.1210/en.2015-1786en_US
dc.identifier.urihttps://hdl.handle.net/1805/13326
dc.language.isoen_USen_US
dc.publisherOxford University Pressen_US
dc.relation.isversionof10.1210/en.2015-1786en_US
dc.relation.journalEndocrinologyen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectCalciumen_US
dc.subjectChromosome mappingen_US
dc.subjectFibroblast growth factorsen_US
dc.subjectGene-environment interactionen_US
dc.subjectInbred miceen_US
dc.subjectVitamin Den_US
dc.titleGene-by-Diet Interactions Affect Serum 1,25-Dihydroxyvitamin D Levels in Male BXD Recombinant Inbred Miceen_US
dc.typeArticleen_US
ul.alternative.fulltexthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733130/en_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Gene-by-Diet Interactions Affect Serum 1,25-Dihydroxyvitamin D Levels in Male BX.pdf
Size:
560.84 KB
Format:
Adobe Portable Document Format
Description:
Main Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: