The National COVID Cohort Collaborative (N3C): Rationale, design, infrastructure, and deployment

dc.contributor.authorHaendel, Melissa A.
dc.contributor.authorChute, Christopher G.
dc.contributor.authorBennett, Tellen D.
dc.contributor.authorEichmann, David A.
dc.contributor.authorGuinney, Justin
dc.contributor.authorKibbe, Warren A.
dc.contributor.authorPayne, Philip R. O.
dc.contributor.authorPfaff, Emily R.
dc.contributor.authorRobinson, Peter N.
dc.contributor.authorSaltz, Joel H.
dc.contributor.authorSpratt, Heidi
dc.contributor.authorSuver, Christine
dc.contributor.authorWilbanks, John
dc.contributor.authorWilcox, Adam B.
dc.contributor.authorWilliams, Andrew E.
dc.contributor.authorWu, Chunlei
dc.contributor.authorBlacketer, Clair
dc.contributor.authorBradford, Robert L.
dc.contributor.authorCimino, James J.
dc.contributor.authorClark, Marshall
dc.contributor.authorColmenares, Evan W.
dc.contributor.authorFrancis, Patricia A.
dc.contributor.authorGabriel, Davera
dc.contributor.authorGraves, Alexis
dc.contributor.authorHemadri, Raju
dc.contributor.authorHong, Stephanie S.
dc.contributor.authorHripscak, George
dc.contributor.authorJiao, Dazhi
dc.contributor.authorKlann, Jeffrey G.
dc.contributor.authorKostka, Kristin
dc.contributor.authorLee, Adam M.
dc.contributor.authorLehmann, Harold P.
dc.contributor.authorLingrey, Lora
dc.contributor.authorMiller, Robert T.
dc.contributor.authorMorris, Michele
dc.contributor.authorMurphy, Shawn N.
dc.contributor.authorNatarajan, Karthik
dc.contributor.authorPalchuk, Matvey B.
dc.contributor.authorSheikh, Usman
dc.contributor.authorSolbrig, Harold
dc.contributor.authorVisweswaran, Shyam
dc.contributor.authorWalden, Anita
dc.contributor.authorWalters, Kellie M.
dc.contributor.authorWeber, Griffin M.
dc.contributor.authorZhang, Xiaohan Tanner
dc.contributor.authorZhu, Richard L.
dc.contributor.authorAmor, Benjamin
dc.contributor.authorGirvin, Andrew T.
dc.contributor.authorManna, Amin
dc.contributor.authorQureshi, Nabeel
dc.contributor.authorKurilla, Michael G.
dc.contributor.authorMichael, Sam G.
dc.contributor.authorPortilla, Lili M.
dc.contributor.authorRutter, Joni L.
dc.contributor.authorAustin, Christopher P.
dc.contributor.authorGersing, Ken R.
dc.contributor.departmentBiomedical Engineering and Informatics, Luddy School of Informatics, Computing, and Engineering
dc.date.accessioned2024-08-12T14:10:32Z
dc.date.available2024-08-12T14:10:32Z
dc.date.issued2021
dc.description.abstractObjective: Coronavirus disease 2019 (COVID-19) poses societal challenges that require expeditious data and knowledge sharing. Though organizational clinical data are abundant, these are largely inaccessible to outside researchers. Statistical, machine learning, and causal analyses are most successful with large-scale data beyond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science community focused on analyzing patient-level data from many centers. Materials and methods: The Clinical and Translational Science Award Program and scientific community created N3C to overcome technical, regulatory, policy, and governance barriers to sharing and harmonizing individual-level clinical data. We developed solutions to extract, aggregate, and harmonize data across organizations and data models, and created a secure data enclave to enable efficient, transparent, and reproducible collaborative analytics. Results: Organized in inclusive workstreams, we created legal agreements and governance for organizations and researchers; data extraction scripts to identify and ingest positive, negative, and possible COVID-19 cases; a data quality assurance and harmonization pipeline to create a single harmonized dataset; population of the secure data enclave with data, machine learning, and statistical analytics tools; dissemination mechanisms; and a synthetic data pilot to democratize data access. Conclusions: The N3C has demonstrated that a multisite collaborative learning health network can overcome barriers to rapidly build a scalable infrastructure incorporating multiorganizational clinical data for COVID-19 analytics. We expect this effort to save lives by enabling rapid collaboration among clinicians, researchers, and data scientists to identify treatments and specialized care and thereby reduce the immediate and long-term impacts of COVID-19.
dc.eprint.versionFinal published version
dc.identifier.citationHaendel MA, Chute CG, Bennett TD, et al. The National COVID Cohort Collaborative (N3C): Rationale, design, infrastructure, and deployment. J Am Med Inform Assoc. 2021;28(3):427-443. doi:10.1093/jamia/ocaa196
dc.identifier.urihttps://hdl.handle.net/1805/42734
dc.language.isoen_US
dc.publisherOxford University Press
dc.relation.isversionof10.1093/jamia/ocaa196
dc.relation.journalJournal of the American Medical Informatics Association
dc.rightsAttribution-NonCommercial 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.sourcePMC
dc.subjectCOVID-19
dc.subjectEHR data
dc.subjectSARS-CoV-2
dc.subjectClinical data model harmonization
dc.subjectCollaborative analytics
dc.subjectOpen science
dc.titleThe National COVID Cohort Collaborative (N3C): Rationale, design, infrastructure, and deployment
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Haendel2021National-CCBYNC.pdf
Size:
3.61 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: