Coxsackievirus B3 elicits a sex-specific CD8+ T cell response which protects female mice

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2023-09-05
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Public Library of Science
Abstract

Sex is a significant contributor to the outcome of human infections. Males are frequently more susceptible to viral, bacterial, and fungal infections, often attributed to weaker immune responses. In contrast, a heightened immune response in females enables better pathogen elimination but leaves females more predisposed to autoimmune diseases. Unfortunately, the underlying basis for sex-specific immune responses remains poorly understood. Here, we show a sex difference in the CD8+ T cell response to an enteric virus, Coxsackievirus B3 (CVB3). We found that CVB3 induced expansion of CD8+ T cells in female mice but not in male mice. CVB3 also increased the proportion and number of CD11ahiCD62Llo CD8+ T cells in female mice, indicative of activation. This response was independent of the inoculation route and type I interferon. Using a recombinant CVB3 virus expressing a model CD8+ T cell epitope, we found that the expansion of CD8+ T cells in females is viral-specific and not due to bystander activation. Finally, the depletion of CD8+ T cells, prior to infection, led to enhanced mortality, indicating that CD8+ T cells are protective against CVB3 in female mice. These data demonstrate that CVB3 induces a CD8+ T cell response in female mice and highlight the importance of sex-specific immune responses to viral pathogens.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Dhalech AH, Condotta SA, Pattnaik A, Corn C, Richer MJ, Robinson CM. Coxsackievirus B3 elicits a sex-specific CD8+ T cell response which protects female mice. PLoS Pathog. 2023;19(9):e1011465. Published 2023 Sep 5. doi:10.1371/journal.ppat.1011465
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
PLoS Pathogens
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}