Symmetric contours and convergent interpolation

Date
2018-01
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

The essence of Stahl–Gonchar–Rakhmanov theory of symmetric contours as applied to the multipoint Padé approximants is the fact that given a germ of an algebraic function and a sequence of rational interpolants with free poles of the germ, if there exists a contour that is “symmetric” with respect to the interpolation scheme, does not separate the plane, and in the complement of which the germ has a single-valued continuation with non-identically zero jump across the contour, then the interpolants converge to that continuation in logarithmic capacity in the complement of the contour. The existence of such a contour is not guaranteed. In this work we do construct a class of pairs interpolation scheme/symmetric contour with the help of hyperelliptic Riemann surfaces (following the ideas of Nuttall and Singh, 1977; Baratchart and Yattselev, 2009). We consider rational interpolants with free poles of Cauchy transforms of non-vanishing complex densities on such contours under mild smoothness assumptions on the density. We utilize ∂̄-extension of the Riemann–Hilbert technique to obtain formulae of strong asymptotics for the error of interpolation.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Yattselev, M. L. (2018). Symmetric contours and convergent interpolation. Journal of Approximation Theory, 225, 76-105. https://doi.org/10.1016/j.jat.2017.10.003
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Approximation Theory
Rights
Publisher Policy
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}