A new multi-sensor integrated index for drought monitoring

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2019-04
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Drought is one of the most expensive but least understood natural disasters. Remote sensing based integrated drought indices have the potential to describe drought conditions comprehensively, and multi-criteria combination analysis is increasingly used to support drought assessment. However, conventional multi-criteria combination methods and most existing integrated drought indices fail to adequately represent spatial variability. An index that can be widely used for drought monitoring across all climate regions would be of great value for ecosystem management. To this end, we proposed a framework for generating a new integrated drought index applicable across diverse climate regions. In this new framework, a local ordered weighted averaging (OWA) model was used to combine the Temperature Condition Index (TCI) from the Moderate-resolution Imaging Spectroradiometer (MODIS), the Vegetation Condition Index (VCI) developed using the Vegetation Index based on Universal Pattern Decomposition method (VIUPD), the Soil Moisture Condition Index (SMCI) derived from the Advanced Microwave Scanning Radiometer–Earth Observation System (AMSR-E), and the Precipitation Condition Index (PCI) derived from the Tropical Rainfall Measuring Mission (TRMM). This new index, which we call the “Geographically Independent Integrated Drought Index (GIIDI),” was validated in diverse climate divisions across the continental United States. Results showed that GIIDI was better correlated with in-situ PDSI, Z-index, SPI-1, SPI-3 and SPEI-6 (overall r-value = 0.701, 0.794, 0.811, 0.733, 0.628; RMSE = 1.979, 0.810, 0.729, 1.049 and 1.071, respectively) when compared to the Microwave Integrated Drought Index (MIDI), Optimized Meteorological Drought Index (OMDI), Scaled Drought Condition Index (SDCI), PCI, TCI, SMCI, and VCI. GIIDI also performed well in most climate divisions for both short-term and long-term drought monitoring. Because of the superior performance of GIIDI across diverse temporal and spatial scales, GIIDI has considerable potential for improving our ability to monitor drought across a range of biomes and climates.

Description
Keywords
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Jiao, W., Tian, C., Chang, Q., Novick, K. A., & Wang, L. (2019). A new multi-sensor integrated index for drought monitoring. Agricultural and Forest Meteorology, 268, 74–85. https://doi.org/10.1016/j.agrformet.2019.01.008
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Agricultural and Forest Meteorology
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}