Machine Learning in Additive Manufacturing: A Review

dc.contributor.authorMeng, Lingbin
dc.contributor.authorMcWilliams, Brandon
dc.contributor.authorJarosinski, William
dc.contributor.authorPark, Hye-Yeong
dc.contributor.authorJung, Yeon-Gil
dc.contributor.authorLee, Jehyun
dc.contributor.authorZhang, Jing
dc.contributor.departmentEngineering Technology, School of Engineering and Technologyen_US
dc.date.accessioned2020-06-17T17:10:40Z
dc.date.available2020-06-17T17:10:40Z
dc.date.issued2020
dc.description.abstractIn this review article, the latest applications of machine learning (ML) in the additive manufacturing (AM) field are reviewed. These applications, such as parameter optimization and anomaly detection, are classified into different types of ML tasks, including regression, classification, and clustering. The performance of various ML algorithms in these types of AM tasks are compared and evaluated. Finally, several future research directions are suggested.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationMeng, L., McWilliams, B., Jarosinski, W., Park, H. Y., Jung, Y. G., Lee, J., & Zhang, J. (2020). Machine Learning in Additive Manufacturing: A Review. JOM, 1-15. https://doi.org/10.1007/s11837-020-04155-yen_US
dc.identifier.urihttps://hdl.handle.net/1805/22982
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s11837-020-04155-yen_US
dc.relation.journalJOMen_US
dc.rightsIUPUI Open Access Policyen_US
dc.sourceAuthoren_US
dc.subjectadditive manufacturingen_US
dc.subjectmachine learningen_US
dc.subjectML algorithmsen_US
dc.titleMachine Learning in Additive Manufacturing: A Reviewen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Meng_2019_machine.pdf
Size:
1.58 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: