Dynamic PEG-Peptide Hydrogels via Visible Light and FMN-Induced Tyrosine Dimerization

If you need an accessible version of this item, please submit a remediation request.
Date
2018
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

Photo-responsive hydrogels have become invaluable three-dimensional (3D) culture matrices for mimicking aspects of extracellular matrix (ECM). Recent efforts have focused on using ultraviolet (UV) light exposure and multifunctional macromers to induce secondary hydrogel crosslinking and dynamic matrix stiffening in the presence of cells. This contribution reports the design of a novel yet simple dynamic poly(ethylene glycol)-peptide hydrogel system through flavin mononucleotide (FMN) induced di-tyrosine crosslinking. These di-tyrosine linkages effectively increase hydrogel crosslinking density and elastic modulus. In addition, the degree of stiffening in hydrogels at a fixed PEG macromer content can be readily tuned by controlling FMN concentration or the number of tyrosine residues built-in to the peptide linker. Furthermore, tyrosine-bearing pendant biochemical motifs could be spatial-temporally patterned in the hydrogel network via controlling light exposure through a photomask. The visible light and FMN induced tyrosine dimerization process produces cytocompatible and physiologically relevant degree of stiffening, as shown by changes of cell morphology and gene expression in pancreatic cancer and stromal cells. This new dynamic hydrogel scheme should be highly desirable for researchers seeking a photo-responsive hydrogel system without complicated chemical synthesis and secondary UV light irradiation.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Liu HY, Nguyen HD, Lin CC. Dynamic PEG-Peptide Hydrogels via Visible Light and FMN-Induced Tyrosine Dimerization. Adv Healthc Mater. 2018;7(22):e1800954. doi:10.1002/adhm.201800954
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Advanced Healthcare Materials
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}