3D Bone Morphology Alters Gene Expression, Motility, and Drug Responses in Bone Metastatic Tumor Cells

If you need an accessible version of this item, please submit a remediation request.
Date
2020-09-21
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
MDPI
Abstract

Patients with advanced skeletal metastases arising from primary cancers including breast, lung, and prostate suffer from extreme pain, bone loss, and frequent fractures. While the importance of interactions between bone and tumors is well-established, our understanding of complex cell–cell and cell–microenvironment interactions remains limited in part due to a lack of appropriate 3D bone models. To improve our understanding of the influence of bone morphometric properties on the regulation of tumor-induced bone disease (TIBD), we utilized bone-like 3D scaffolds in vitro and in vivo. Scaffolds were seeded with tumor cells, and changes in cell motility, proliferation, and gene expression were measured. Genes associated with TIBD significantly increased with increasing scaffold rigidity. Drug response differed when tumors were cultured in 3D compared to 2D. Inhibitors for Integrin β3 and TGF-β Receptor II significantly reduced bone-metastatic gene expression in 2D but not 3D, while treatment with the Gli antagonist GANT58 significantly reduced gene expression in both 2D and 3D. When tumor-seeded 3D scaffolds were implanted into mice, infiltration of myeloid progenitors changed in response to pore size and rigidity. This study demonstrates a versatile 3D model of bone used to study the influence of mechanical and morphometric properties of bone on TIBD.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Dadwal, U. C., Merkel, A. R., Page, J. M., Kwakwa, K. A., Kessler, M., & Rhoades, J. A. (2020). 3D Bone Morphology Alters Gene Expression, Motility, and Drug Responses in Bone Metastatic Tumor Cells. International Journal of Molecular Sciences, 21(18), 6913. https://doi.org/10.3390/ijms21186913
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
International Journal of Molecular Sciences
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}