Leveraging Electronic Dental Record Data to Classify Patients Based on Their Smoking Intensity

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2018
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Thieme
Abstract

Background Smoking is an established risk factor for oral diseases and, therefore, dental clinicians routinely assess and record their patients' detailed smoking status. Researchers have successfully extracted smoking history from electronic health records (EHRs) using text mining methods. However, they could not retrieve patients' smoking intensity due to its limited availability in the EHR. The presence of detailed smoking information in the electronic dental record (EDR) often under a separate section allows retrieving this information with less preprocessing.

Objective To determine patients' detailed smoking status based on smoking intensity from the EDR.

Methods First, the authors created a reference standard of 3,296 unique patients’ smoking histories from the EDR that classified patients based on their smoking intensity. Next, they trained three machine learning classifiers (support vector machine, random forest, and naïve Bayes) using the training set (2,176) and evaluated performances on test set (1,120) using precision (P), recall (R), and F-measure (F). Finally, they applied the best classifier to classify smoking status from an additional 3,114 patients’ smoking histories.

Results Support vector machine performed best to classify patients into smokers, nonsmokers, and unknowns (P, R, F: 98%); intermittent smoker (P: 95%, R: 98%, F: 96%); past smoker (P, R, F: 89%); light smoker (P, R, F: 87%); smokers with unknown intensity (P: 76%, R: 86%, F: 81%), and intermediate smoker (P: 90%, R: 88%, F: 89%). It performed moderately to differentiate heavy smokers (P: 90%, R: 44%, F: 60%). EDR could be a valuable source for obtaining patients’ detailed smoking information.

Conclusion EDR data could serve as a valuable source for obtaining patients' detailed smoking information based on their smoking intensity that may not be readily available in the EHR.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Patel, J., Siddiqui, Z., Krishnan, A., & Thyvalikakath, T. P. (2018). Leveraging Electronic Dental Record Data to Classify Patients Based on Their Smoking Intensity. Methods of Information in Medicine. https://doi.org/10.1055/s-0038-1675817
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Methods of Information in Medicine
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}