MedShift: Automated Identification of Shift Data for Medical Image Dataset Curation

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2023
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
IEEE
Abstract

Automated curation of noisy external data in the medical domain has long been demanding as AI technologies should be validated on various sources with clean annotated data. To curate a high-quality dataset, identifying variance between the internal and external sources is a fundamental step as the data distributions from different sources can vary significantly and subsequently affect the performance of the AI models. Primary challenges for detecting data shifts are – (1) access to private data across healthcare institutions for manual detection, and (2) the lack of automated approaches to learn efficient shift-data representation without training samples. To overcome the problems, we propose an automated pipeline called MedShift to detect the top-level shift samples and evaluating the significance of shift data without sharing data between the internal and external organizations. MedShift employs unsupervised anomaly detectors to learn the internal distribution and identify samples showing significant shiftness for external datasets, and compared their performance. To quantify the effects of detected shift data, we train a multi-class classifier that learns internal domain knowledge and evaluating the classification performance for each class in external domains after dropping the shift data. We also propose a data quality metric to quantify the dissimilarity between the internal and external datasets. We verify the efficacy of MedShift with musculoskeletal radiographs (MURA) and chest X-rays datasets from more than one external source. Experiments show our proposed shift data detection pipeline can be beneficial for medical centers to curate high-quality datasets more efficiently. The code can be found at https://github.com/XiaoyuanGuo/MedShift. An interface introduction video to visualize our results is available at https://youtu.be/V3BF0P1sxQE.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Guo X, Gichoya JW, Trivedi H, Purkayastha S, Banerjee I. MedShift: Automated Identification of Shift Data for Medical Image Dataset Curation. IEEE J Biomed Health Inform. 2023;27(8):3936-3947. doi:10.1109/JBHI.2023.3275104
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
IEEE Journal of Biomedical and Health Informatics
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}