MedShift: Automated Identification of Shift Data for Medical Image Dataset Curation
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Automated curation of noisy external data in the medical domain has long been demanding as AI technologies should be validated on various sources with clean annotated data. To curate a high-quality dataset, identifying variance between the internal and external sources is a fundamental step as the data distributions from different sources can vary significantly and subsequently affect the performance of the AI models. Primary challenges for detecting data shifts are – (1) access to private data across healthcare institutions for manual detection, and (2) the lack of automated approaches to learn efficient shift-data representation without training samples. To overcome the problems, we propose an automated pipeline called MedShift to detect the top-level shift samples and evaluating the significance of shift data without sharing data between the internal and external organizations. MedShift employs unsupervised anomaly detectors to learn the internal distribution and identify samples showing significant shiftness for external datasets, and compared their performance. To quantify the effects of detected shift data, we train a multi-class classifier that learns internal domain knowledge and evaluating the classification performance for each class in external domains after dropping the shift data. We also propose a data quality metric to quantify the dissimilarity between the internal and external datasets. We verify the efficacy of MedShift with musculoskeletal radiographs (MURA) and chest X-rays datasets from more than one external source. Experiments show our proposed shift data detection pipeline can be beneficial for medical centers to curate high-quality datasets more efficiently. The code can be found at https://github.com/XiaoyuanGuo/MedShift. An interface introduction video to visualize our results is available at https://youtu.be/V3BF0P1sxQE.