PHASE TRANSITION AND THERMODYNAMIC PROPERTIES STUDY OF ZIRCONIA USING FIRST PRINCIPLES METHOD

If you need an accessible version of this item, please submit a remediation request.
Date
2014-04-11
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

Zirconium dioxide (ZrO2) ceramics are of highly scientific and industrial interest. Since zirconia performs high melting temperature and small thermal conductivity, this material is well developed and commonly used for thermal barrier coating material in industry. This study investigates zirconium dioxide properties based on first principles calculation. Structural properties, including band structure, density of state, lattice parameter, as well as elastic constant for both monoclinic and tetragonal zirconia were computed. Pressure based phase transition of tetragonal zirconia (t-ZrO2) was calculated using DFT method CASTEP code. This work is based on band structure and tetragonal distortion change under compression pressure. The results predict a transition from monoclinic structure to a fluorite-type cubic structure at pressure of 37 GPa. Monoclinic phased zirconia (m-ZrO2) thermodynamic property calculations were also carried out using the Vienna ab initio Simulation Package VASP coupled with PHONOPY. The temperature dependence of specific heat capacity, entropy, free energy, Debye temperature of monoclinic zirconia, from 0 to 1000K, were computed and compared well with those reported from other relevant work.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Zhang, Y., Zhang, J. (2014, April 11). PHASE TRANSITION AND THERMODYNAMIC PROPERTIES STUDY OF ZIRCONIA USING FIRST PRINCIPLES METHOD. Poster session presented at IUPUI Research Day 2014, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Other
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}