CX3CR1 deficiency aggravates amyloid driven neuronal pathology and cognitive decline in Alzheimer's disease

dc.contributor.authorPuntambekar, Shweta S.
dc.contributor.authorMoutinho, Miguel
dc.contributor.authorLin, Peter Bor‑Chian
dc.contributor.authorJadhav, Vaishnavi
dc.contributor.authorTumbleson‑Brink, Danika
dc.contributor.authorBalaji, Ananya
dc.contributor.authorBenito, Martin Alvarado
dc.contributor.authorXu, Guixiang
dc.contributor.authorOblak, Adrian
dc.contributor.authorLasagna‑Reeves, Cristian A.
dc.contributor.authorLandreth, Gary E.
dc.contributor.authorLamb, Bruce T.
dc.contributor.departmentMedical and Molecular Genetics, School of Medicineen_US
dc.date.accessioned2023-07-10T15:37:54Z
dc.date.available2023-07-10T15:37:54Z
dc.date.issued2022-06-28
dc.description.abstractBackground: Despite its identification as a key checkpoint regulator of microglial activation in Alzheimer's disease, the overarching role of CX3CR1 signaling in modulating mechanisms of Aβ driven neurodegeneration, including accumulation of hyperphosphorylated tau is not well understood. Methodology: Accumulation of soluble and insoluble Aβ species, microglial activation, synaptic dysregulation, and neurodegeneration is investigated in 4- and 6-month old 5xFAD;Cx3cr1+/+ and 5xFAD;Cx3cr1-/- mice using immunohistochemistry, western blotting, transcriptomic and quantitative real time PCR analyses of purified microglia. Flow cytometry based, in-vivo Aβ uptake assays are used for characterization of the effects of CX3CR1-signaling on microglial phagocytosis and lysosomal acidification as indicators of clearance of methoxy-X-04+ fibrillar Aβ. Lastly, we use Y-maze testing to analyze the effects of Cx3cr1 deficiency on working memory. Results: Disease progression in 5xFAD;Cx3cr1-/- mice is characterized by increased deposition of filamentous plaques that display defective microglial plaque engagement. Microglial Aβ phagocytosis and lysosomal acidification in 5xFAD;Cx3cr1-/- mice is impaired in-vivo. Interestingly, Cx3cr1 deficiency results in heighted accumulation of neurotoxic, oligomeric Aβ, along with severe neuritic dystrophy, preferential loss of post-synaptic densities, exacerbated tau pathology, neuronal loss and cognitive impairment. Transcriptomic analyses using cortical RNA, coupled with qRT-PCR using purified microglia from 6 month-old mice indicate dysregulated TGFβ-signaling and heightened ROS metabolism in 5xFAD;Cx3cr1-/- mice. Lastly, microglia in 6 month-old 5xFAD;Cx3cr1-/- mice express a 'degenerative' phenotype characterized by increased levels of Ccl2, Ccl5, Il-1β, Pten and Cybb along with reduced Tnf, Il-6 and Tgfβ1 mRNA. Conclusions: Cx3cr1 deficiency impairs microglial uptake and degradation of fibrillar Aβ, thereby triggering increased accumulation of neurotoxic Aβ species. Furthermore, loss of Cx3cr1 results in microglial dysfunction typified by dampened TGFβ-signaling, increased oxidative stress responses and dysregulated pro-inflammatory activation. Our results indicate that Aβ-driven microglial dysfunction in Cx3cr1-/- mice aggravates tau hyperphosphorylation, neurodegeneration, synaptic dysregulation and impairs working memory.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationPuntambekar SS, Moutinho M, Lin PB, et al. CX3CR1 deficiency aggravates amyloid driven neuronal pathology and cognitive decline in Alzheimer's disease. Mol Neurodegener. 2022;17(1):47. Published 2022 Jun 28. doi:10.1186/s13024-022-00545-9en_US
dc.identifier.urihttps://hdl.handle.net/1805/34284
dc.language.isoen_USen_US
dc.publisherBMCen_US
dc.relation.isversionof10.1186/s13024-022-00545-9en_US
dc.relation.journalMolecular Neurodegenerationen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourcePMCen_US
dc.subjectAmyloiden_US
dc.subjectCX3CR1en_US
dc.subjectMicrogliaen_US
dc.subjectNeurodegenerationen_US
dc.subjectTauen_US
dc.titleCX3CR1 deficiency aggravates amyloid driven neuronal pathology and cognitive decline in Alzheimer's diseaseen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
13024_2022_Article_545.pdf
Size:
8.86 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: